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ADDITIVES IN NEUTRAL pH Zn BATTERIES

Controlling Zn?* solvation for uniform zinc plating and minimizing corrosion

ZHS: Zn4(OH)GSO4 ‘n H20

Insulating side product from
hydrogen evolution and
zinc corrosion
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CO-SOLVENTS VS. ANTI-SOLVENTS

Co-Solvent

Both solvents can dissolve the salt in the

Anti-Solvent

electrolyte
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The additive is soluble in the first solvent but
does not dissolve the salt
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Can the Zn?* solvation shell be influenced with something other than H,0?



ACETONITRILE WITH ZINC SULFATE AND WATER

Many studies over-exaggerate or don’t interrogate the additive’s ability to

solvate Zn?*

Phase separation of ZnSO4 solutions shows
Computational prediction of Zn-H,O-ACN inability to solvate
complexes in bulk solution
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BULK SOLVATION

X-ray studies and Raman spectroscopy conclusively show ACN is NOT in
the first solvation shell of Zn2*, no matter the concentration
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INTERFACIAL SOLVATION: DOUBLE LAYER

Capacitance measurements show an increase in C, with increasing ACN,
pointing to changes in double layer structure
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INTERFACIAL SOLVATION: SHINERS

Surface-enhanced Raman spectroscopy shows subtle shifts in ACN signal
depending on the electrode chemistry and potential
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INTERFACIAL SOLVATION: SIDE REACTIONS

Electrochemical hydrogen evolution reaction (HER) is suppressed with ACN,
and invariance with cation valence shows interface over bulk effect
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ZINC PLATING: OVERPOTENTIAL

Charge transfer overpotential increases with 5 and 10 vol % ACN, apparent
in voltammetry and half cells with various electrodes
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ZINC PLATING: INITIAL MORPHOLOGY

Adding ACN decreases initial Zn nuclei size and marginally more compact
deposits compared to pure aqueous solution
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ELECTRODE EFFECTS: ALLOYING

Preliminary X-ray diffraction results show alloy compositions of Cu,Zn,,
possibly up to CusZng
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ONSET CHARGE AT LOWER CURRENT
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GALVANOSTATIC CYCLING OF A Cu/Zn HALF CELL.:

15T CYCLE
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» There is a local minimum in both Zn nucleation and growth overpotentials in the 0.5-2 vol% ACN
range before greater ACN concentration increases the overpotentials above low-ACN concentration.

» SEM-EDX cross-section images of plated Zn on Cu electrodes after 100 plating/stripping steps show that
even 0.5% ACN drastically changes ZHS distribution within plated Zn, while Zn morphology still similar after

many cycles regardless of ACN
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CUMULATIVE COULOMBIC EFFICIENCY (CCE) OVER 100
CYCLES FOR Cu||Zn CELLS

Cumulative CE = 100 x 1_[ Qstrlp i

plate,n

Cumulative Coulombic Efficiency measures
charge loss in the cell by integrating the efficiency
over every cycle

Zn loss can occur via dead Zn formation or
through corrosion (which leads to ZHS formation).

After 10 cycles the CCE is maximized at 0.5-2
vol% ACN, in line with the optimized
overpotentials

After 100 cycles, however, the only trend is that
adding any ACN concentration generally improves
CCE above the pure aqueous electrolyte
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XRD PATTERN OF ACU ELECTRODE AFTER 1 AND 100
PLATE/STRIP CYCLES
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ZHS structure affects interfacial ion
transport and/or local pH changes

Most dependent on antisolvent
additions during the initial cycling
stages.

Clear differences in the ZHS amount
and structure showing antisolvent
strength, H-bonding can influence ZHS
growth

Low amounts of ACN (0.5-2 vol%)
shift the texturing towards more
Zn(002) after the first plating step and
after 100 cycles

Aligns with lower plating
overpotentials and lower amounts
of ZHS, indicating 0.5-2 vol% is the
optimal ACN concentration for Zn
anodes.
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GALVANOSTATIC CHARGE-DISCHARGE CURVES OF
Znlldelta-MnO, FULL CELLS
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ZnliIMnO, FULL CELL AT OPEN CIRCUIT VOLTAGE

f) 1 - g) Vol % ACN | h) B,

} e | 120+ 100 .
] — e % =
1,3.; %} 1.84 05 | L 1 2%
< 164 T o - 10% | W e i o
. ..:: E . —e—10% | _.'-‘;l':- g god ¢ | _ _3‘_3_%{_]
& 141 36 17{ - EE" ? + E0 ﬁgl
145 ] 1 = e & "" = ..___-" ]
= ! | = O LT A . =y i{ T - m =
2 12 % et © E 40! g L4 © 3
'I:J' = l-*l' ' E - ﬂ b
| = * O [ o O
101 o= 181 - Sl
L . . _ : =) 0+ . . . —~0 -

Q 10 20 30 0 ] 10 0 5 10 15 20

Time (h) OCV Hold Vol % ACN
(after every 5th charge)

» Simulated rest periods (calendar aging) that a practical battery would experience

» Example voltage profiles showing charge—discharge cycles with a 12 h open circuit rest period after
every fifth charge cycle at 0.1 A gpyno2~"-

» Open circuit voltage at the end of the rest period over 50 cycles (10 total rest periods).

» 2 and 10 vol% ACN show minimal losses over the same time (<50 mV).
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Neelam Omprakash Sunariwal, Thanh Le, Xiaoran Yang, Trenton Gallagher, Jordi Cabana, Tim Vosburgh and
Sanja Tepavcevic Effect of Pre-Conditioning on Cycling Performance of Aqueous Zn-lon Batteries (submitted)
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MNO, BALL-MILLED AND COATED ON STAINLESS STEEL FOIL
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» Ball milled electrodes showed improved wetting and higher capacity vs. non-ball milled.

» The ratio of active material, conductive carbon, and binder influenced the cycling stability and maximum
discharge capacity achieved.

» The 7:2:1 ratio with high solvent to solid ratio of 1:3.5 shows the highest capacity of over 360 mAh/g at C/5
» Slow-to- Fast Rate Cycling at RT did not significantly improve capacity
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FAST-TO-SLOW PRECONDITIONING AND RATE CYCLING AT RT

a) 700 b) 700 > Fast-to-slow formation cycling
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EFFECT OF CATHODE LOADING ON CAPACITY RETENTION

500

400 ~

[ 9+
o
(=)

Capacity (mAh/g)

s
o
(=)

-o- Charge Discharge CE
c/10
' g
J \\
C/3 /
| 1.98 mg/cm?
0 - é I 1|0 I 1|5 I ZIO

Cycle number

C/M10

o~
<

/ 5.88 mg/cm?

o~

— T T T T T T T T
0 5 10 15 20 25

Cycle number

#% U.S. DEPARTMENT Argonne National Lab

- nal Laboratory is a
i o U5, Department of Energy laboratory
aﬁ@;‘ of ENERGY managed by UChicago Argonne, LLC

500

400

[
[=]
[=]

Capacity (mAh/g)

—

[=]

(=]
1

[

(=]

(=]
1

-o-Charge Discharge CE
l\ C/10
lcr3 \
2.2 mg/cm?
4
0 ' 5 ' 10 ' 15 ' 20
Cycle number
C/10
c3
i
/
/ 6.01 mg/cm?
0. é I 1I0 I 1I5 I ZIO I 2I5

Cycle number

Different loading of ball-milled
MnO, active material coated on
304 stainless steel foil and
assembled into coin cells at
Coulomb Technology

Fast-to-slow formation cycling
preconditioning at RT:
» 3 cycles at C/3 followed by
C/10 cycling

MnO2 loading ~2mg/cm?2: achieved
capacity of ~500-600 mAh/g

MnQO2 loading ~6mg/cm?:
achieved capacity of ~350 mAh/g
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Cycling Induced Phase Transformations of EMD
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» Powder XRD after 25 cycles for end of

charge (EOC), end of discharge (EOD) with
low and high loading cathode

Initial y-phase of MnO, after 25 cycles turns
into ZnMn,O, type spinel phase.

At EOD, new peaks arose at low 28 around
12° and around 25° appeared, which were
ascribed to a layered &-phase.

With low loading cathode thickness ~27um
and high loading ~55um, no obvious
differences were observed between the
cycled cathodes after 25 cycles due to
limitation of Cu Ka X-ray source,

Desing approaches to preserve layered, d-
MnO, polymorph formed after initial fast
rate pre-conditioning to retain high specific
capacities over long term cycling.
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Antisolvent effects at anode and cathode interfaces

CONCLUSIONS
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» Acetonitrile addition to ZnSO, electrolyte leads to antisolvent behavior: it is excluded from the Zn2+ and
S0O,42- solvation shells in the bulk electrolyte but adsorbs on the electrode surface and changes interfacial
solvation structures.

» This leads to improved zinc metal plating morphologies and lower HER rates, which cumulatively increase the
efficiency of Zn plating and stripping.

» Low (0.5-2 vol%) ACN concentrations showed local minima for Zn plating and stripping overpotentials and
highest cumulative CE efficiency over 100 cycles in both half-cell (Cu/Zn) and full cell (MnO2/Zn) configurations

» Ball milling of MnO, and coating on stainless steel foil show positive impact on specific capacity.

» Short high-temperature preconditioning and/or fast-to-slow formation cycling achieved the largest capacity
improvements (~500—-600 mAh/g) for the low loading of active material (~2mg/cm?2).

» Controlling extensive phase transformations during electrochemical cycling of MnO, cathodes with approaches
to preserve layered, d-MnO, polymorph can retain high specific capacities over long term cycling
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Lawrence Berkeley National Laboratory
Bay Area, CA | JUNE 23-25, 2026

The 16th Beyond Lithium-lon Conference (BLI-XVI) will be hosted by LBNL in bay area, CA from June 23 to June 25, 2026. This
meeting continues a series of symposia organized by a consortium of U.S. National Laboratories (ANL, LBNL, LLNL, NREL,
ORNL, PNNL, and SLAC), IBM and NASA Research Centers to bring together scientists and engineers, focusing on advances in
scalable energy storage beyond the current state-of-the-art lithium-ion batteries.
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