

Electrolytes: The Key to Advancing Aqueous Battery Technologies

EMILY DICKENS | SODIUM ZINC BATTERY WORKSHOP | NOVEMBER 2025

AGENDA

- 01 The Aqueous Opportunity
- 02 Electrolyte as a Key to Innovation
- 03 Octet's Approach – Your Electrolyte Partners
- 04 Case Study

Deliver your most competitive battery with Octet's advanced electrolyte solutions.

Prove your tech at market readiness trials – no model rebuild necessary.

CLIENT RESULTS INCLUDE:

20%

CAPACITY
INCREASE

10%

EFFICIENCY
BOOST

2X

LONGER
OPERATING
LIFE

Octet's Philosophy: Aqueous Makes Electrolytes More Critical Than Ever

NEW CHEMISTRY FOR A NEW ERA.

- Reaction is in the electrolyte
- More components to optimize
- Green field moment

Octet makes new electrolyte additives to optimize tomorrow's water-based batteries.

ELECTROLYTE DEVELOPMENT

>400
TESTED
MOLECULES

7
PATENTS

ELECTROLYTE MANUFACTURING

Multi-national
Manufacturing
Footprint

What Octet Solves

PARASITIC SIDE REACTIONS

- Gassing: on charge, discharge, or in a static state
- Corrosion
- Hydrogen Evolution
- Self-Discharge

METAL PLATING

- Dendritic Growth
- Shape Change
- Plating Morphology
- Plating Quality + Quantity: at bottom of charge

STABILITY

- Electrochemical Reversibility
- pH stability

Small Molecular Changes, Significant Impact

	Dendritic Growth (Plating)	Anode Polarization	Hydrogen Evolution Overpotential (Parasitic Side Reaction - bonus feature)	Discharge Capacity Improvement (Plating)	Blinded Customer Cell Capacity Improvement
No Additive		0	0	0%	0%
Base Molecule		+190 (Better)	+100 (Good)	0%	Not Tested
+ a Methyl group (-CH ₃)		+160 (Best)	+130 (Better)	22% (Good)	+18%
+ a Methoxy group (-OCH ₃)		+210 (Good)	+190 (Best)	89% (Best)	+27%

Electrolyte Development

- Molecular-Level Design & Analysis
- Rapid Bench Scale Testing
- Battery Testing

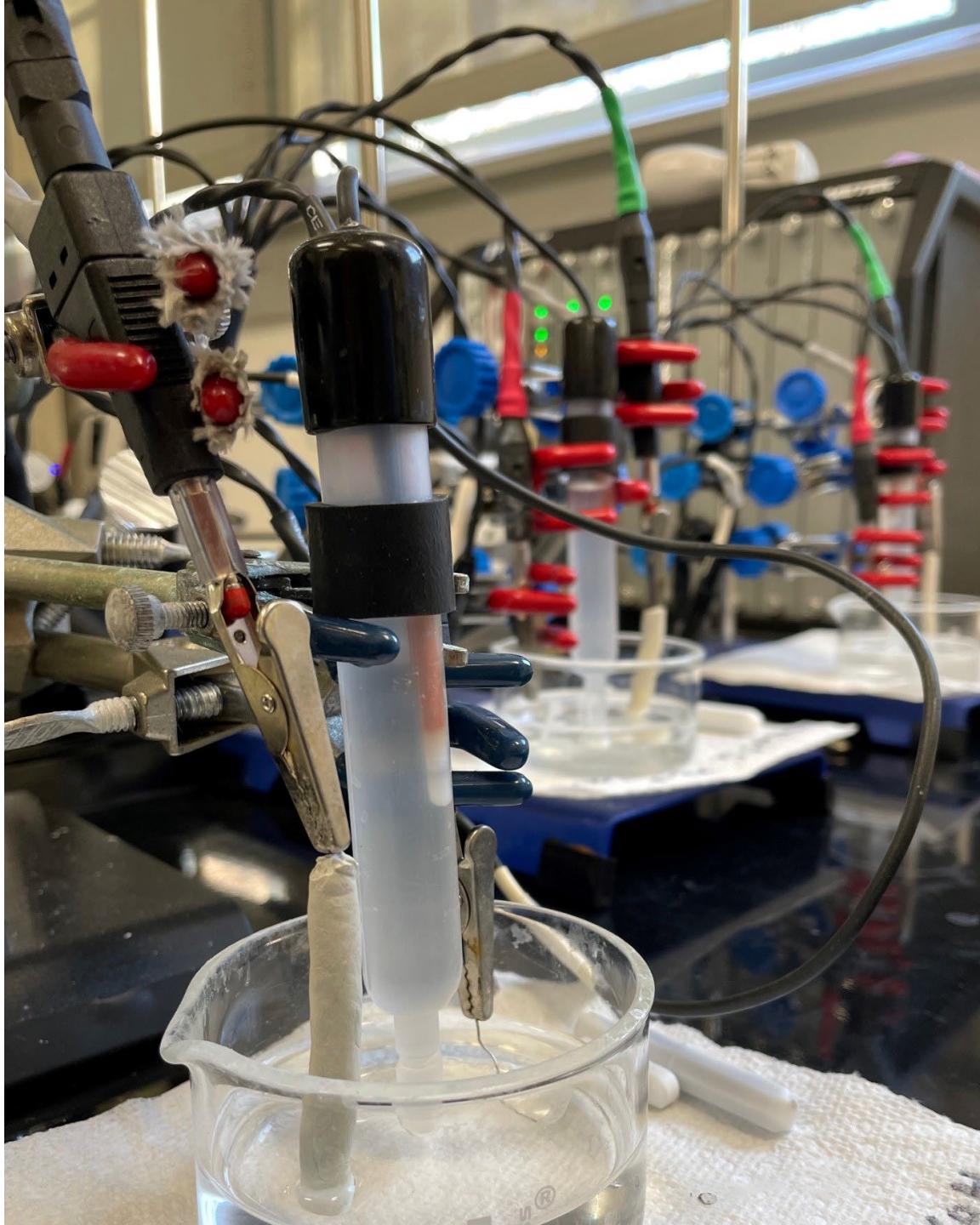
Molecular-Level Design & Analysis

FULL SYNTHETIC CHEMISTRY

- Small molecule & small-batch polymer synthesis

CHEMICAL ANALYSIS

- Structural: NMR, IR, MALDI
- Purity: GC, AA, GPC, IPC
- Stability: Aging, pH, CV
- Solubility & temperature ranges

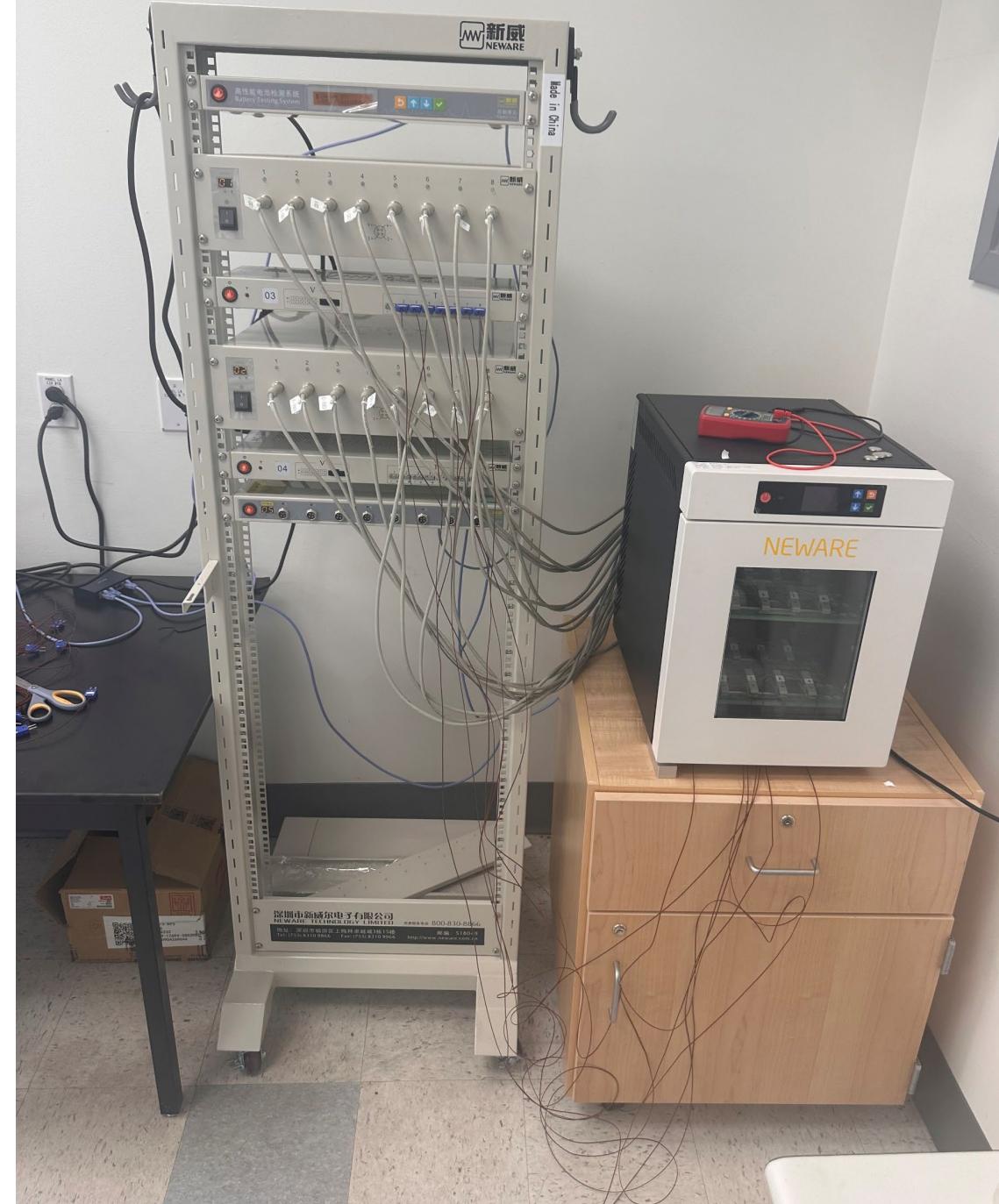

Rapid Bench Scale Testing

ELECTROCHEMICAL ANALYSIS

- EIS
- Linear scan voltammetry: Tafel analysis
- Coulombic efficiency
- Polarization on charge and discharge
- Plating quality (Hull cell)
- ...and more

ELECTROLYTE PHYSICAL ANALYSIS

- Static gassing at temperature
- Corrosion
- Material compatibility
- pH stability


Battery Testing

HALF AND FULL CELL ANALYSIS

- Cycle life
- Coulombic efficiency
- Nucleation overpotential
- In situ EIS

POSTMORTEM ANALYSES

- Materials & Chemical characterization
- SEM / TEM
- XRD

Manufacturing

- International manufacturing partnerships
- Eliminate supply chain uncertainties
 - ✓ Consistent Quality
 - ✓ Reliable Delivery
 - ✓ Streamlined Commercialization

Improve Capacity through better metal utilization

Detailed, Cooperatively Created Testing & Iterations

6 Months' Octet Lab Time

Over 75 Additive candidates and combinations explored

Room Temp and 50 °C

\$86.5M

POTENTIAL SAVINGS

+20%

ENERGY DENSITY

Sufficient material for pre-pilot tests at customer site

Be among the best-informed.

Aqueous Battery Brief

Sign up Now

www.OctetSci.com/Newsletter

Aqueous Battery Brief

Crucial news for aqueous energy storage innovators

Brought to you by [Octet Scientific](#)

Welcome to the Aqueous Battery Brief, the news roundup created specifically for aqueous battery professionals. Not yet a subscriber? [Join here](#).

October 30, 2025 • Estimated reading time: 2 - 3 minutes.

1. Adoption, Deals, and Tech

AquaBattery and Sciven to Partner on LDES

Saltwater-based flow battery firm **AquaBattery** has signed a Letter of Intent (LOI) for strategic collaboration with integrated sustainable tech solutions provider **Sciven**. The two firms will explore LDES pilot deployment opportunities, commercial and industrial use cases, and models for long-term partnership. [Details in BEST](#).

Thank you

EMILY DICKENS | SODIUM ZINC BATTERY WORKSHOP | NOVEMBER 2025