

Andrew Malek

amalek@alchemyindustrial.com

Kevin Meagher

kmeagher@thesuncompany.us

NAATBatt Sodium-Zinc Battery Workshop

R&D Activity in Zinc Battery Technology

Houston | November 30 - December 1, 2023

Presenters

Andrew Malek

VP of Engineering and Manufacturing

Andrew leads Alchemy development for The Sun Company and other clients including including Urban Electric Power (ZnMn battery technology)

Kevin Meagher

Chief Science Officer

Kevin has 20 years pioneering energy modeling and analytics solutions with over 20 patents awarded. Previously, Kevin was President and CTO of Power Analytics, industry leader in Digital Twin software.

The Sun Company

The Sun Company is creating innovative and sustainable solutions for the renewable energy industry

Alchemy Industrial

A wide-angle photograph of a renewable energy facility. In the foreground, a large array of solar panels is mounted on a tracking system. Behind them, several white cylindrical energy storage batteries are arranged in a row. In the background, two wind turbines stand tall against a sky filled with scattered clouds.

Alchemy Industrial provides advanced
manufacturing services for the
energy storage industry

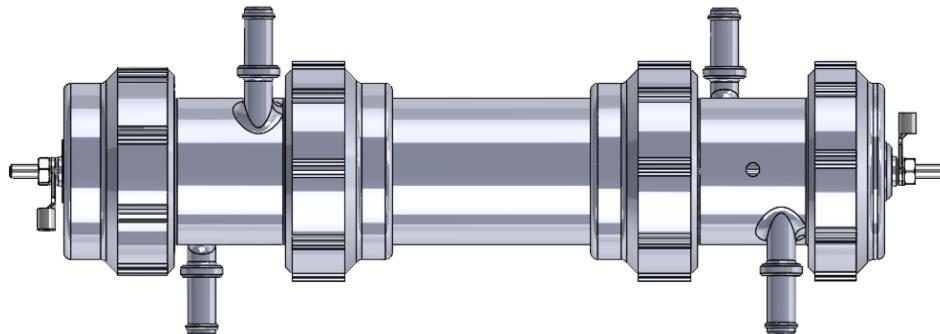
TSC Flow Battery Development History

Combining superior energy density & power density for REDOX flow

2018

- The Sun Company (TSC) initiated its quest to accelerate renewable energy adoption
Exclusive license secured from PNNL for Zinc Iodide electrolyte

COLLABORATIVE BREAKTHROUGHS


- Electrolyte Chemistry
- Battery Longevity
- Cell Stack Design
- Manufacturing

Definition of Terms

- **Cells** - The “cell” is the lowest level of the hardware design. The cell is where the electron transfer occurs for discharging and charging of electricity.

Reactor - The “reactor” houses the “cells” and provides the path for the flow of the anolyte and catholyte through the cells.

Stack - The “stack” houses the reactors and the required electrical and plumbing connections to form a working unit. The TSC stack design will likely be between 2.3 and 2.6kW per stack.

Design Objectives of TSC REDOX

SUPPLY CHAIN SECURITY

- Abundant (critical electrolyte chemistry, Zinc Iodide)
 - Both Zinc and Iodine reserves far exceed global Lithium reserves

Geopolitically Friendly Reserves

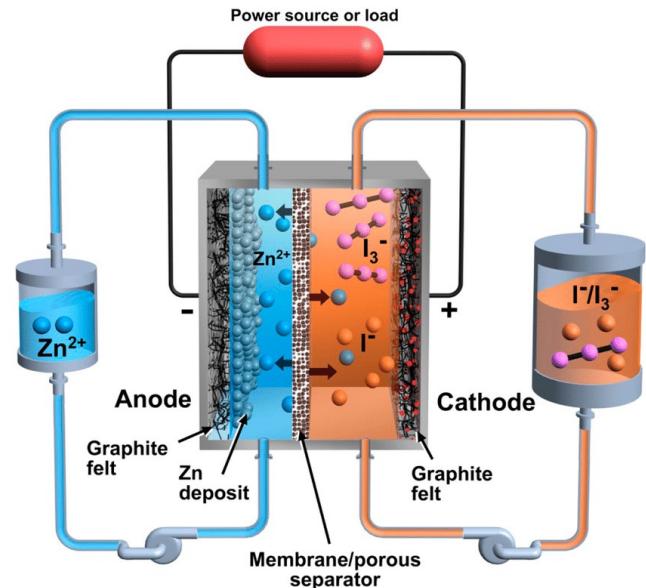
- 43% of Zinc ore is mined in the U.S.
- 85% of global Iodine reserves are found in the U.S., Japan, and South America

Commoditized and Multi-source Off-the-Shelf Componentry

- TSC batteries will utilize domestically sourced power electronics, pumps, sensors, and other key components

Domestic Manufacturing and Assembly

- TSC batteries will be built and assembled in the U.S.


EARTH-FRIENDLY DESIGN

Earth-friendly (low carbon, non-toxic) manufacturing

- The creation of ZnI_2 (Zinc Iodide) utilizes a simple, low-cost, low-heat, and non-toxic chemical reaction

Complete End of Life Recycling

- The battery electrolyte never wears out.
- TSC batteries can undergo 'refurbishing' at 30 years to replace minor components such as pumps and electronics and extend its operation life by decades

Design Objectives of TSC REDOX

ROBUST

- Proven Redox Flow Architecture
 - The redox flow battery architecture has been used by industry for over 50 years

30 year Lifecycle

- Each reactor is guaranteed for 20 years with an expected lifetime of over 30 years

Wide operating temperature range (-4 to 131 degree F)

HIGH DENSITY

Energy Density

- TSC batteries utilizes TSC's exclusive Zinc Polyiodide electrolyte chemistry providing up to 7x the energy storage of any alternative within a given space

Power Density

- TSC batteries use a radically new cell stack design providing up to 20x the power delivery capacity within a given space

SAFE

Electrolyte Chemistry

- The TSC battery electrolyte is Non-toxic, Non-flammable, and Non-explosive

Design Objectives of TSC REDOX

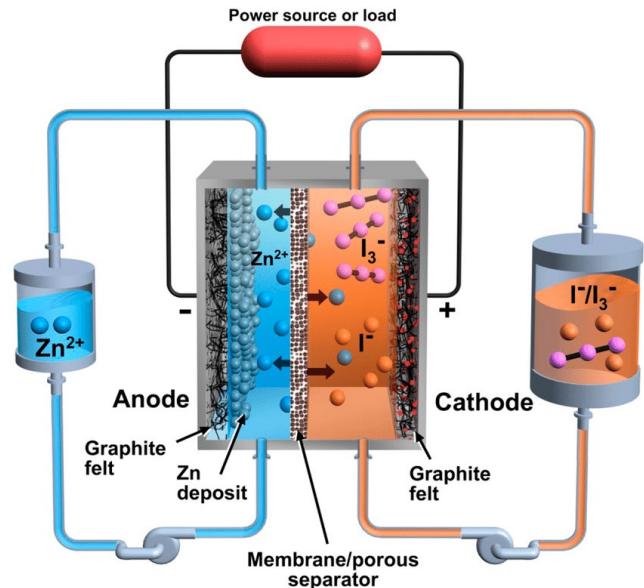
PERFORMANT

- Duty Cycle
 - TSC batteries support 2 full charge/discharge cycles / day making them ideal for residential and industrial use cases including market participation, dynamic load management, EV charging, and other applications
- Efficiency
 - Round trip energy efficiency is over 85%

COST EFFECTIVE

Levelized Cost of Storage (LCOS)

- The TSC battery high duty cycle, low price and long lifetime make it highly competitive


SCALABLE

Scalable Energy

- The TSC 1000 supports custom electrolyte storage tanks sizing allowing the battery to support hours, days, or weeks of off-grid operation

Scalable Power

- The TSC 1000 uses a scalable design with pluggable 'reactors' that can be added to flexibly increase battery power delivery within a monitored and managed rack-based framework

Zinc Additives (Chemistry & Geometry)

- Octet Scientific (Z6)

Suppress unwanted side reactions such as dendrite growth and gas generation

Enhance desired electronic effects such as low surface polarization and increased conductivity

Improve electrolyte physical properties such as viscosity and stability

Design for Manufacturing

- To scale using contract manufacturing and hybrid “Maker Labs”
- Fast prototyping
- Agile Manufacturing
- Workforce Development

Andrew Malek

amalek@alchemyindustrial.com

Kevin Meagher

kmeagher@thesuncompany.us

Thank You

R&D Activity in Zinc Battery Technology

Houston | November 30 - December 1, 2023