

The race between Sodium-ion battery(SIB) and Lithium-ion battery(LIB)

November 30, 2023

Speaker

Andreas Sakellaris

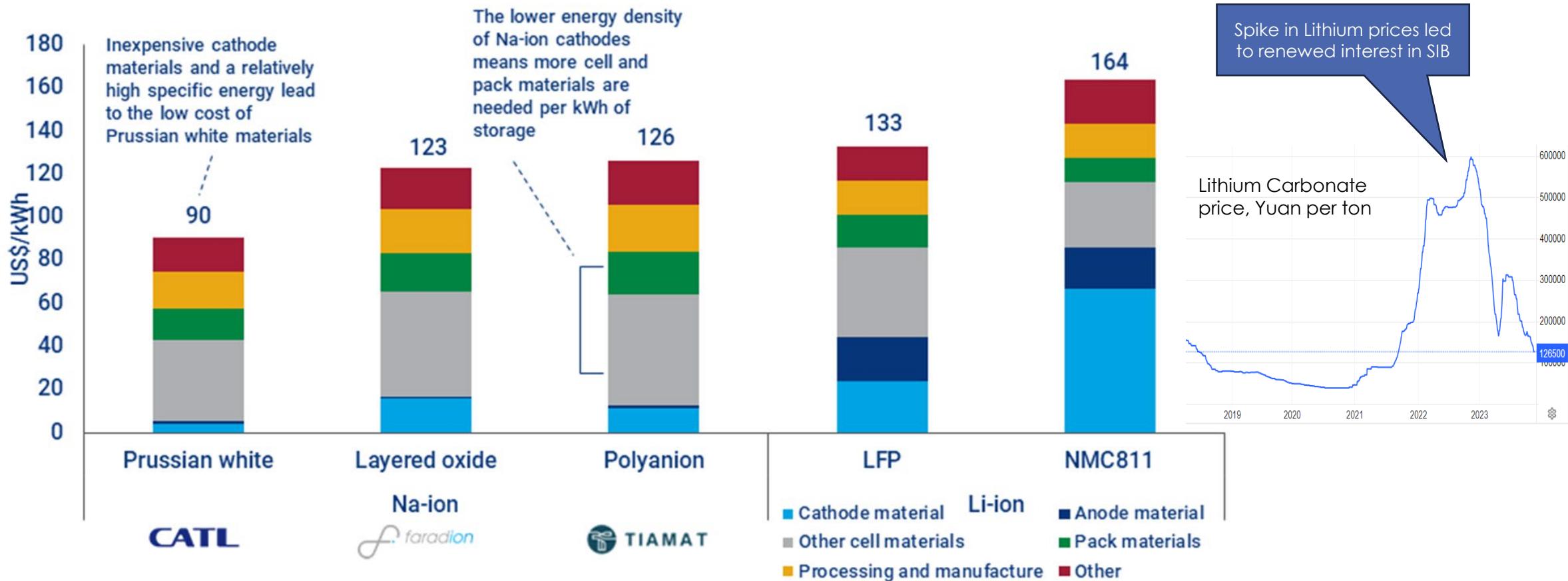
Director, Emerging Technologies

a proven track record of bringing complex energy projects to fruition in diverse and challenging environments across the world.

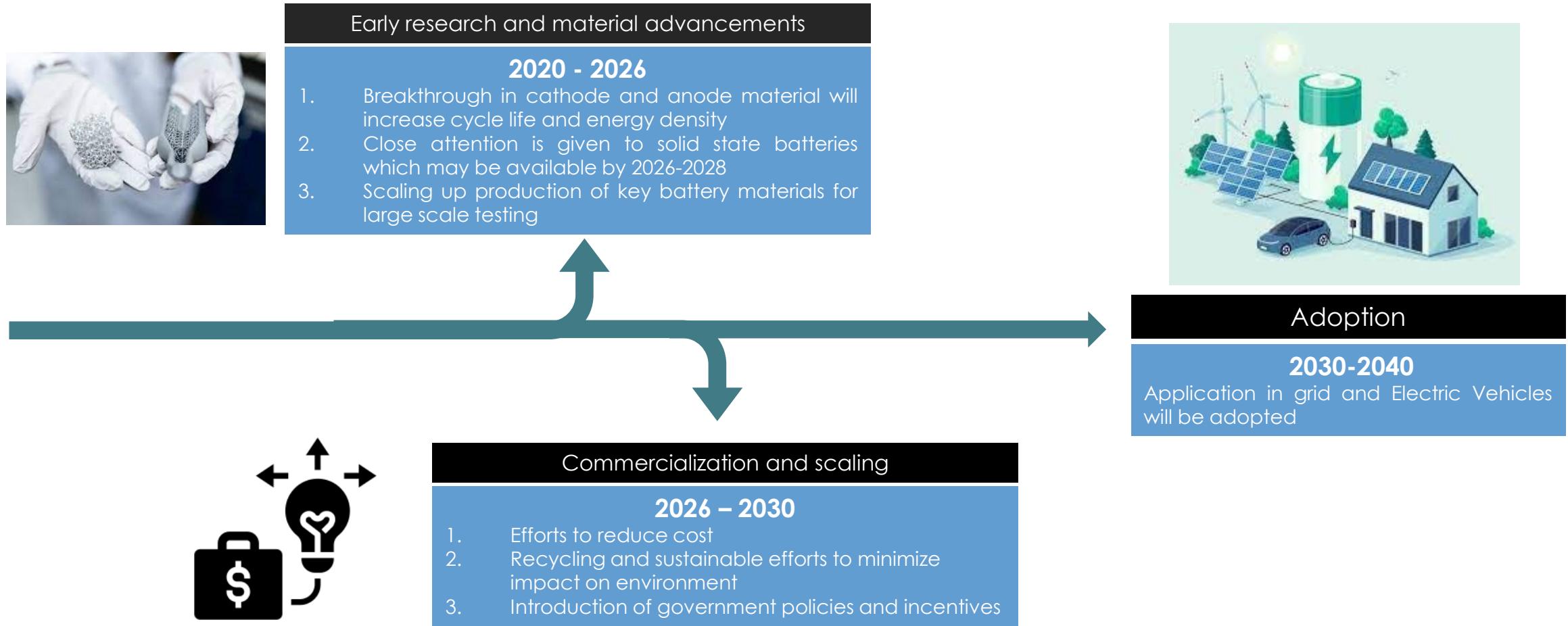
Story of LIB taking surpassing SIB

In a sodium-ion battery, lithium ions are replaced with sodium ions in the battery's cathode, and lithium salts swapped for sodium salts in the electrolyte.

Research on SIBs has been ardently pursued concurrently with LIB development during batteries' 200-year existence. It wasn't until the 1970s that the electrochemical activity of Titanium Disulfide (TiS_2) for lithium and its viability for energy storage were first proposed. Early in the 1980s, it was realized that Na^+ ions may be injected into TiS_2 because of this finding.


The result of the failure to intercalate sodium ions and the discovery of graphite as a low-cost, moderate-capacity anode material for LIBs, This accelerated the development in the 1990s, outpacing the development of sodium chemistry.

The availability of sodium storage in hard carbon (HC), which would produce an energy capacity equivalent to that of Li^+ in graphite, then rekindled study in 2000. Nov. 2023: **Northvolt announces 160 Wh/kg SIB product**


Sodium-ion (Na-ion) batteries present a lower cost option than lithium-based counterparts

2022 battery pack costs by chemistry

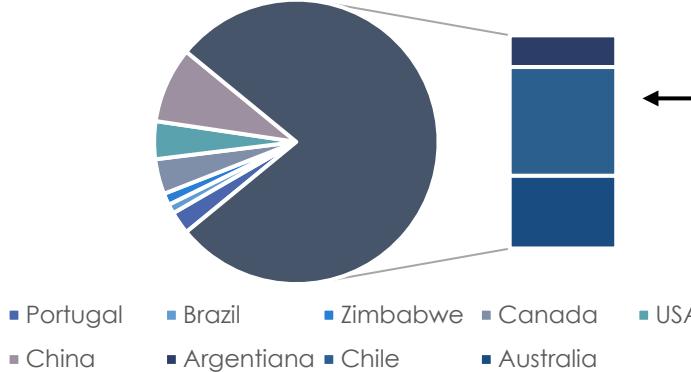
Source: Wood Mackenzie

Futuristic roadmap for Sodium ion Battery

Overview

SIB	LIB
No thermal runaway	Thermal runaway is the biggest issue
Size of sodium is larger than Lithium which reduces the risk of dendrite formation	Less safety due to dendrite formation
Runs at greater voltage which reduces the possibility of overcharging	Reduces the battery life due to overcharging
Only aluminum is used for current collector which makes it cheaper comparatively to LIB	Aluminum and copper is used as a current collector
Can be stored and transported in zero voltage makes it environmentally friendly	LIB should be stored in some minimum charge(varies from Different chemistry)
SIB have 3 times higher life cycle than LIB	LIB have 3 type less life cycle from SIB

- To integrate renewable energy sources, SIB can be used in grid energy storage.
- SIB may also be used in portable devices, but have a greater advantage vs. LIB for stationary applications.
- Safer chemistry and abundance of sodium makes them a good option.


Availability of primary salts

Dominators in supply chain

- Li Mining: Australia, Chile
- Refining: China

NaOH is considered over Na₂CO₃ due to availability & small difference in Cost

Extractable Lithium(million metric tons)

For LIB(Li)

Country	Extractable Lithium (metric tons)
Portugal	0.06
Brazil	0.25
Zimbabwe	0.31
Canada	0.93
USA	1.00
China	2.00
Argentina	2.70
Chile	9.30
Australia	6.20

For SIB(Na)

Country	Company
India	Tata Chemicals Itd
USA	Olin corporation
USA	Westlake corporation
Belgium	Solvay S A
Germany	BASF
China	Xinjiang Zongtai Chemicals

Opportunities for countries to produce Sodium Salts(primary requirement) will be increased which is environmentally friendly and produced by most of the country in the world

Largest producers of primary salts of SIB(NaOH, Na₂CO₃)

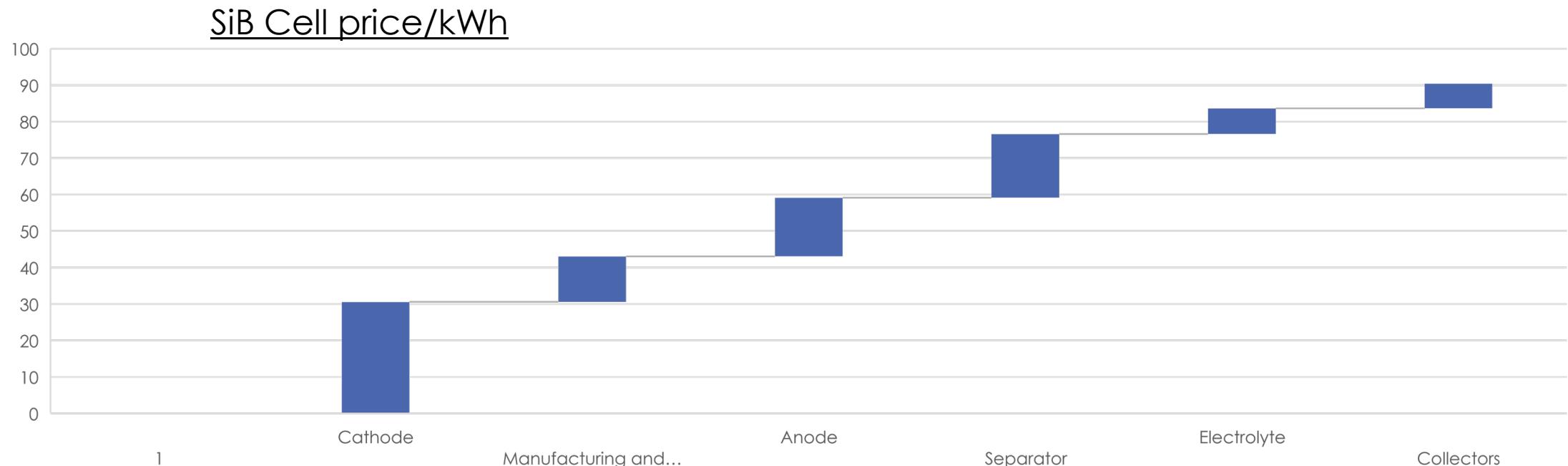
The price of lithium salts is approximately \$13,000 per ton, looms large because minerals account for about one-fourth of the cost of a battery. Sodium salts cost \$150-200 per ton, making SIBs much cheaper.

Na₂CO₃

Rank	Country	World Production, By Country (Thousand metric tons)
1	China	24,290
2	United States	11,500
3	Russian Federation	2,810
4	Germany	2,650

42 million metric ton production annually

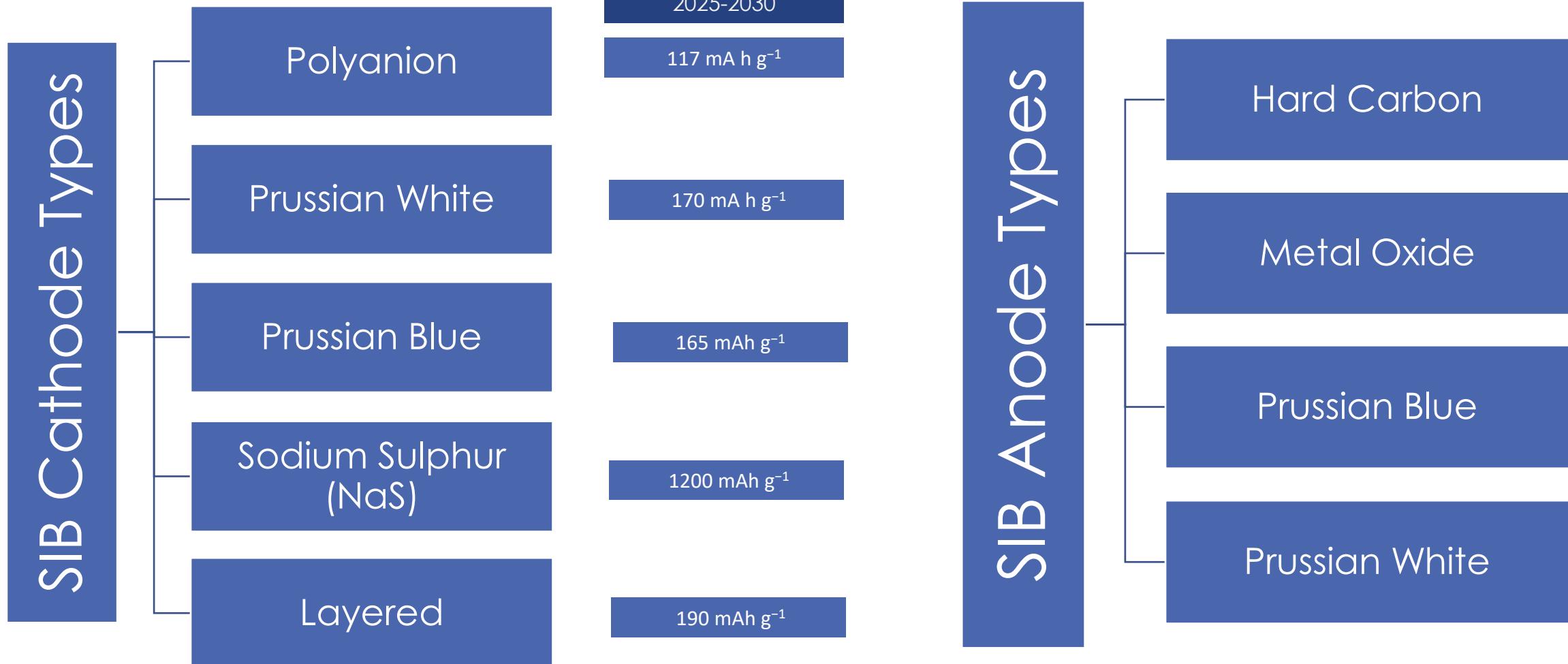
Approximately 3-3.5 kg of cathode powder is required to produce 1 KWh* for Sodium Vanadium Phosphate (NVP)


NaOH

Rank	Country	World Production, By Country (Thousand metric tons)
1	China	37,800
2	India	15,930
3	European Union	13,560
4	Russia federation	7,810

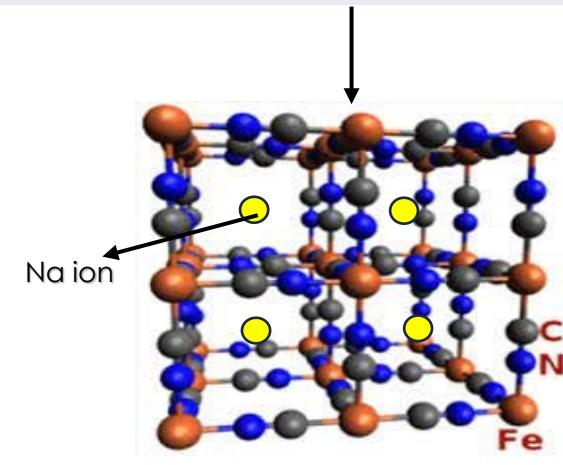
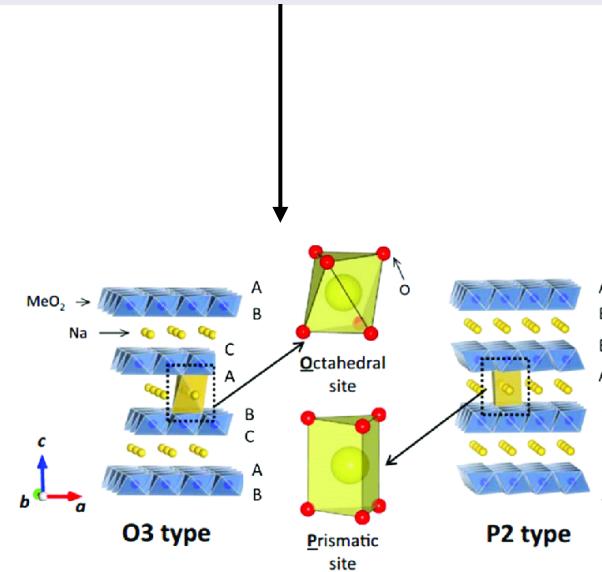
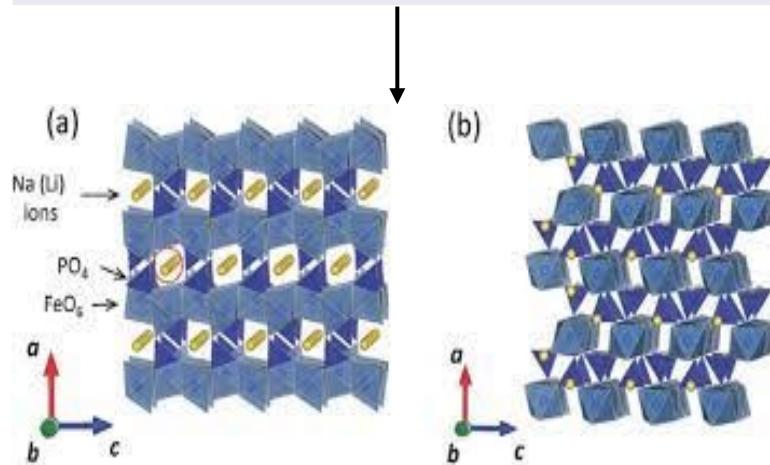
70 million metric ton production annually

Information about lithium availability is stated in slide 22

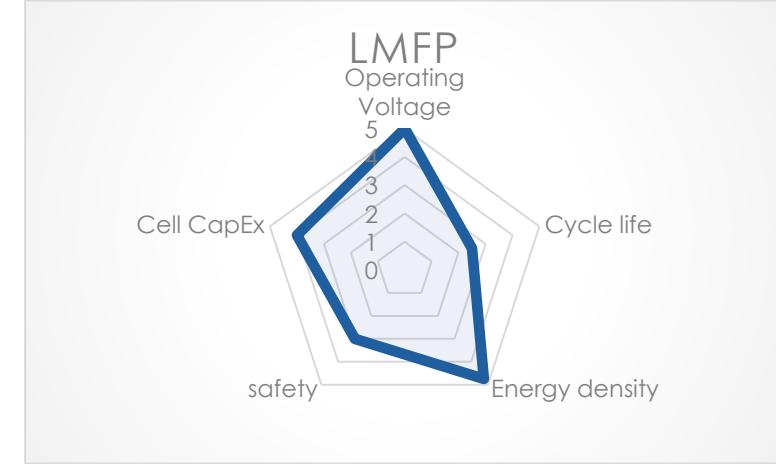
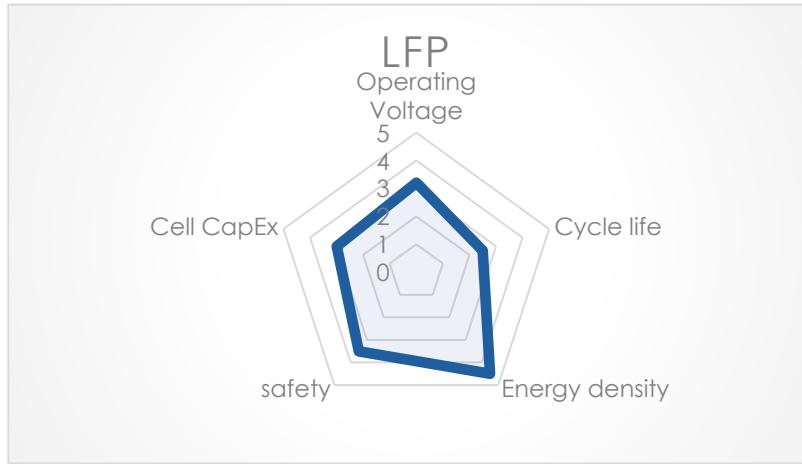

Cost breakdown

- Most companies are in early commercialization. Earliest SiB Gigafactory is expected to start production between 2024-25. SiB price is estimated to be ~\$70-120/kWh. Ongoing efforts may reduce cost by 15-25% (cheap vs. LIB).
- Cost could come down 25-30% during scaleup.
- Using aluminium makes Collector less costly vs. LIB
- Electrolyte conductivity in SiB is very high, so little is required, reducing cost.

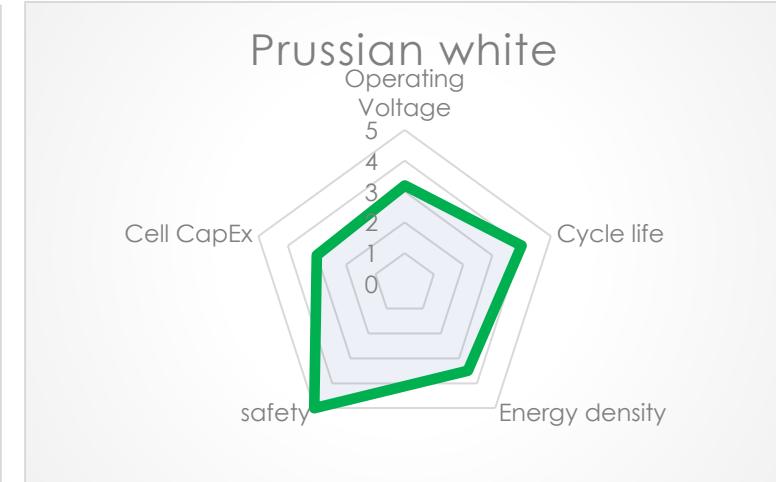
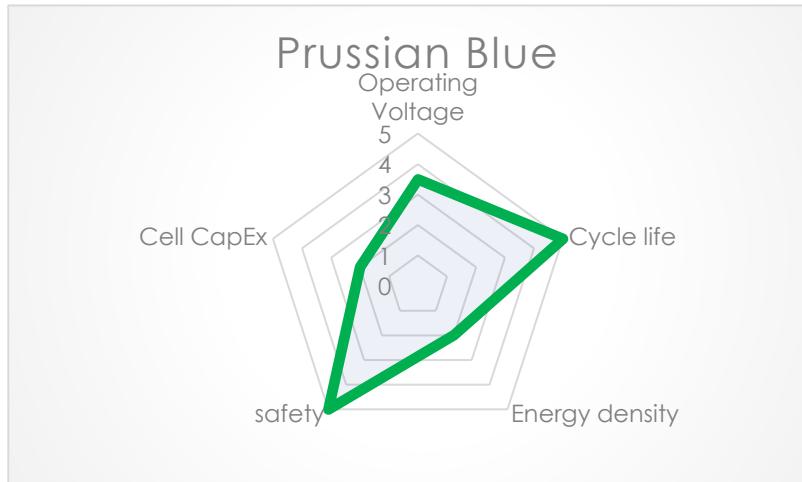
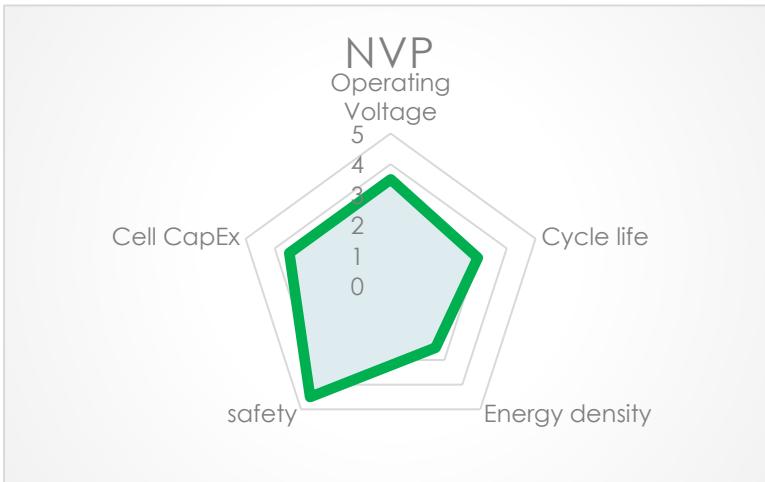
Cell Cost of SiB ranges from \$70 - \$120 / KWh




Different chemistries of SIB with their theoretical capacity

Information about lithium chemistry is given in slide 23 for comparison



Introduction to different chemistries for SIB

Polyanion	Layered	Prussian
Contain negatively charged polyanion groups	Contain stacked layers of transition metal oxides	Contain metal cations
High stability and safety	High stability with good cycle rate	Good capacity with being suitable for high power application
3-D crystal structure , provide good ion diffusion pathway for sodium ions	Have layered structures with open spaces between the layers, allows for good intercalation/deintercalation	Metal cations coordinated with cyanide ion (CN) in 3D framework
Ex: $\text{Na}_3\text{Fe}_2(\text{PO}_4)_3$	Ex: Na_xMeO_2 , Me = transition metal/s	Ex: $\text{NaFe}[\text{Fe}(\text{CN})_6]_3$

Technical parameters

LIB Chemistries:

SIB Chemistries:

Note: Cell CapEx =1 denotes the cost is high

NMC = (lithium) Nickel Manganese Cobalt

LMFP = Lithium Manganese Iron Phosphate

LFP = Lithium Iron Phosphate

NVP = Sodium Vanadium Phosphate

Performance comparison| Cathode variants application in companies for commercialization

SIB

Criteria	Prussian Blue vs PB	PB vs HC	Prussian white	NVP vs HC	NaS
Operating Voltage (V)	1.8	3.4	3.2	3.4	2
Cycle life	> 1,00,000 ** At 1 C	10,000	>40,000	>10,000	>5,000 At 0.2C
Energy density (Wh/kg)	17.3	NA	>100	60	222
Safety	High	high	High	High	High
Cell Capex (\$ / KWh)	NA	228*	< 100	120	<200***
TRL (Predicted)	5-7	5-7	5-6	5-6	6

LIB

Criteria	NMC vs graphite	LFP vs graphite	LMFP vs graphite	NCA vs graphite
Operating Voltage (V)	3.7	3.2	4.1	3.6
Cycle life	2000	4500-5000	>4000 (Expected)	2000-2500
Energy density (Wh/Kg)	265-290	160-180	200-230	250
Safety	Low	Moderate	Moderate	Low
Cell Capex (\$ / KWh)	110-130	100-110	115(Expected)	130-140
TRL (Predicted)	9	9	5-6	8-9

Lower TRL levels have window for improvements in Upcoming updates

* based on Argonne national laboratory

** Natron energy data

*** as of 2020 by NGK

Safety is given based on temperature profile and thermal runaway -
LFP is given moderate in comparison to SIB chemistries

Companies which are near commercialization

Altris AB

Natron
energy

HiNa
battery

Faradion

AMTE
Power

Tiamat
SAS

Role and location

Company	Role	Location	TRL	Fast charging
Altris AB	Commercialize Prussian White	Jiangsu Province, China	3-4	NA
Faradion limited	Cell manufacturer	Sheffield, UK	5-6	2 C
AMTE Power	Cell manufacturer	Oxford, UK	5-6	2.5 C
Tiamat	Cell manufacturer	Amiens, France.	5-6	12 C (5 min)
Natron energy	Commercialize Prussian blue, Cell manufacturing	Santa Clara, USA	5-7	6C (<10 min)
HiNa battery tech	Cell manufacturer	Jiangsu Province, China	6-7	3 C – 4 C
CATL	Cell Manufacturer	Ningde, China	6-7	3 C – 4 C (15 min)

Takeaway

SIB matches market needs and could scale up to 100 GWh production capacity by 2030; 160 Wh/kg energy density could reach over 200 Wh/kg; cell costs could reach ~\$74-105/KWh...

...but LIB will not wait for SIB to catch up, and also keeps improving (e.g., silicon doping of anode)

After thoroughly examining the intricate specifications and strategies of various companies, it is conceivable that SIB may surpass LIB due to their cost effectiveness and rapid charging capabilities.

This also ensures high safety to users.

Lower energy density of SIB is less of a concern when readily available charging stations are equipped for rapid charging, and for stationary storage

Contact us to access our industry leading reports

<https://indiaesa.info/resources/industry-reports>

Andreas Sakellaris
Director, Emerging Tech,
Customized Energy Solutions

andreas.sakellaris@ces-ltd.com

Thank You.

Andreas Sakellaris
Director, Emerging Tech,
Customized Energy Solutions

andreas.sakellaris@ces-ltd.com

USA

CORPORATE HEADQUARTERS

1528 Walnut Street, 22nd Floor
Philadelphia, PA 19102

INDIA

HEADQUARTERS

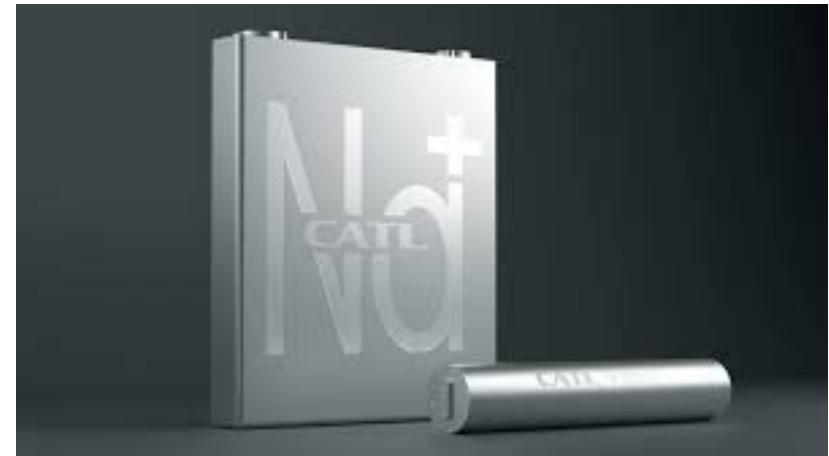
A-501, G-O Square
Aundh-Hinjewadi Link Road
Wakad, Pune 411057, India

JAPAN

〒150-0036

16-28 Nanpeidaicho, ~~Shibuya-ku~~, Tokyo
Daiwa Shibuya Square 6th floor

VIETNAM


11 Bis Phan ~~Ngu~~ Street, Da Kao Ward,
District 1
Ho Chi Minh, Vietnam

Appendix

	Faradion limited	AMTE Power	HiNa battery tech	Altris AB	Natron energy	Tiamat	CATL
Form factor	Pouch cell	Pouch	cylindrical	Prismatic	Prismatic*	cylindrical	Prismatic/cylindrical
Nominal voltage (cell)	4.2	3.1	3.2	3.2	1.8	3.7 - 4****	NA
Chemistry	Layered	PolyAnion based	Na-Fe-Mn-cu (NFMC) vs anthracite-based carbon	Prussian white(PW) vs PW	Prussian blue(PB) vs PB	NVP/NFP/NVTP vs hard carbon	Prussian white vs HC
Cell capacity (Ah), @RT	32	30	25	25, 140	26.5	NA	NA
Energy density (Wh/kg)	160	135-140	LiB energy density: 200-300 Wh/kg	145	165-170(mAh/g)	17.3	90-120
Cycle life (@80% DOD)	3700	>1000	>4500***	3000	>100000**	>5000	>1500
Operating temp. range (°C)	-20 to +60	-40 to 80	-40 to 80	Yet to identify	-20 to 45	-20 to 60	-20 to 60
Applications	Stationary energy storage	Battery energy storage for renewable power	Electric tricycle, motorcycle, industrial and household energy storage	Yet to identify	UPS, EV charging stations	Hybrid electric vehicles	EV
Mass Production plan	2-3 GWh by 2024 Giga factory planned in India by Reliance	30GWh Market size by 2030.	5 GWh by 2025	Expected 1 GWh by cathode material production (dates are yet to be announced)	600 MWh production by the end of year (2023)	6 GWh by 2030	NA

COMPANY 1: CATL | PRUSSIAN WHITE | TRL 7-8*

About	CATL (founded in 2011, China)												
Technology advancement/chemistry	<ul style="list-style-type: none"> Different combination of Prussian white as a cathode and HC as an anode. Bulk structure material for rearranging electrons is designed for cathode & anode with good porous structure. Cell designs used :Cylindrical/Prismatic. Fast-charging, 15min for 80% SoC. 												
Applications	Stationary Battery Storage System, batteries for UPS power back up, Electric Vehicle (EV).												
<table border="1"> <thead> <tr> <th>Parameters</th><th>SIB cell (PW vs HC), cylindrical</th></tr> </thead> <tbody> <tr> <td>Capacity (Ah)</td><td>NA</td></tr> <tr> <td>Energy density (Wh./kg)</td><td>160</td></tr> <tr> <td>Cycle life</td><td>>1500</td></tr> <tr> <td>Nominal voltage(V)</td><td>NA</td></tr> <tr> <td>Operating temperature range(°C)</td><td>-20 to 60</td></tr> </tbody> </table>		Parameters	SIB cell (PW vs HC), cylindrical	Capacity (Ah)	NA	Energy density (Wh./kg)	160	Cycle life	>1500	Nominal voltage(V)	NA	Operating temperature range(°C)	-20 to 60
Parameters	SIB cell (PW vs HC), cylindrical												
Capacity (Ah)	NA												
Energy density (Wh./kg)	160												
Cycle life	>1500												
Nominal voltage(V)	NA												
Operating temperature range(°C)	-20 to 60												

Fig . CATL cell

Cell features

- Next Generation battery chemistry focuses on 200 Wh/Kg.
- CATL to power its first SIB in Chery EV model

Plans

- Production of 20 GWh by 2030

COMPANY 2: HiNa Energy| Layered - Na-Mn-Fe-Cu-O (NMFC) | TRL 6-7 **

About **HiNa Battery technology co ltd.** (founded in 2016 , Jiangsu, China)

Technology advancement/chemistry

- layered cathode material and soft carbon anode material chemistry.
- Cell designs used: Prismatic*, Cylindrical
- Fast-charging C – rate : 2C.
- Different specification of SIB - NaCR26650, NaCR32138

Investors/OEMs/partnership

- Tech partner-Institute of Physics, Chinese Academy of Sciences
- Funding: \$ 140 M (until 2022)

Applications **Stationary Battery Storage System, batteries for UPS power back up**

Fig . HINA cell

Cell features

- based on O3 phase multi-composite layered cathode material and soft carbon anode material chemistry
- NaCP08/80/138 presently available with different sizes.
- 30 Patents applied by the team

Gigafactory production timeline

- HiNa plans for 5GWh in 2025 production with its first phase having 1GWh of sodium ion battery

Parameters	SIB cell (NMFC vs Soft carbon, Prismatic)
Capacity (Ah)	25
Energy density (Wh./kg)	145
Cycle life	4500 +
Nominal voltage(V)	3.2
Operating temperature range(°C)	-40 to 80

COMPANY 3: Natron Energy| Prussian Blue | TRL 5-7**

About

Natron Energy (founded in 2012 , California, USA)

Technology advancement/ chemistry

- They using and built cathode material with different three different combination of PB
- Anthracite based anode material. Porous structure is found which makes intercalation/deintercalation easy
- Cell designs used : Prismatic* (Blue battery pack)
- Fast-charging C – rate : 6C
- Charging range- 1 C – 6 C .

Investors/OEMs/partnership

- Financing partners: Khosla ventures, Fluxus ventures, ABB, Catalus.
- United airlines invested to increase electrifying ground operations
- Total Funding: \$ 175 M (until 2022)

Applications

Stationary Battery Storage System, batteries for UPS power back up EV

Parameters	SIB cell (PB vs PB, prismatic*)
Capacity (Ah)	26.5
Energy density (Wh./kg)	17.3
Cycle life	>1,00,000 (1 C)
Nominal voltage(V)	1.8
Operating temperature range(°C)	-20 to 45

Cost of the per kilo watt hour is almost 2.5-time other sodium ion batteries and 2 times the lithium-ion battery, as an advantage the cycle life is higher than any other battery.

Fig . Natron cell

Cell features

- Full recharge capability in 15 minutes or less, ready immediately
- No BMS as battery assures safety

Plans

- High power and thicker cells are coming out shortly
- 5 GWh production by 2030

COMPANY 4: Tiamat SAS |Layered- N(TM*)P | TRL 5-6**

About	Tiamat SAS (founded in 2017 , France)
Technology advancement/chemistry	<ul style="list-style-type: none">Cathode is built with different dopants of transition metals(vanadium, Titanium) with different compositionsCell designs used :Cylindrical.Fast-charging (5 min),.Cell performance validated with HC as anode & N(TM)P as cathode using proprietary electrolyte.Fast Charging rate: 12 C (0-99% in 5 min)
Investors/OEMs/partnership	<ul style="list-style-type: none">Technology Partnership with ZenergyFunding : > \$70M (until 2022)
Applications	Stationary Battery Storage System, batteries for UPS power back up

Fig . Tiamat cylindrical cell

Parameters	SIB cell (N(TM)P) vs HC, cylindrical)
Capacity (Ah)	NA
Energy density (Wh./kg)	90 - 120
Cycle life	>5000
Nominal voltage(V)	3.7 - 4
Operating temperature range(°C)	-20 to 60

Cell features

- 48-volt automotive cell pack

Plans:

- 6 GWh by 2030 in France

COMPANY 5: AMTE Power plc | Polyanion based | TRL 5-6**

About	AMTE Power plc (founded in 2013, Oxford, UK)
Technology advancement/chemistry	<ul style="list-style-type: none"> Selecting Polyanion based Cathode material. Cell designs used : prismatic* 135 - 140 Wh/kg Gravimetric energy density Validated with HC with Polyanion based cathode material 215 - 280 Wh/l Volumetric energy density C/10- 2.5C charging range, capable of fast charge (Sub 22 min charge)
Investors/OEMs/partnership	<ul style="list-style-type: none"> Manufacturing in Thurso, Scotland. MoU signed with 5 companies, Cosworth, Viritec, MAHLE Powertrain, Sprint Power and BMW. Funding : > \$ 3-5 M (until 2022).
Applications	Battery energy storage for renewable power, including for residential use and in remote locations without grid access.

Parameters	SIB cell (Polyanion based cathode vs HC, Prismatic*)
Capacity (Ah)	30
Energy density (Wh./kg)	>140
Cycle life	1000+
Nominal voltage(V)	3.1
Operating temperature range(°C)	-40 to 80

Note : * based on shape

**predicted values based on updates

Fig . AMTE cell

Cell features

- Single pouch cell size (L*B*H) = 22.8 x 16.7 x 1.16 (±5%)
- HC as an Anode

Gigafactory production timeline

- 1 GWh by 2026.
- Full production targets of >8m cells generating >£200m p.a.

COMPANY 6: Faradion | Layered | TRL 5-6 *

About

Faradion Limited (founded in 2011 , United Kingdom(UK))

Technology advancement/chemistry

- Pouch cells of SIB, using layered cathode with hard carbon with expecting energy density up to 160 Wh/kg
- Nickel is doped in cathode material to increase the energy density and to retain the capacity over cycling
- Hard Carbon with 88% active material, 6% super carbon.
- Cell design used : Pouch cell, prismatic, cylindrical
- C/10- 2C charging range, capable of fast charge (Sub 20 min charge)

Investors/OEMs/partnership

- Tech Partnership with University of (Uo) Sheffield, Uo Oxford.
- **Wholly own subsidiary purchased by Reliance New Energy Solar Limited (RNESL)** Funding : > \$ 160M (until 2022)

Applications

Stationary energy storage

Note: Super carbon is usually known as graphene.

Parameters	SIB cell (Layered vs HC, pouch)
Capacity (Ah)	32
Energy density (Wh./kg)	160
Cycle life	4000+
Nominal voltage(V)	4.2
Operating temperature range(°C)	-20 to 60

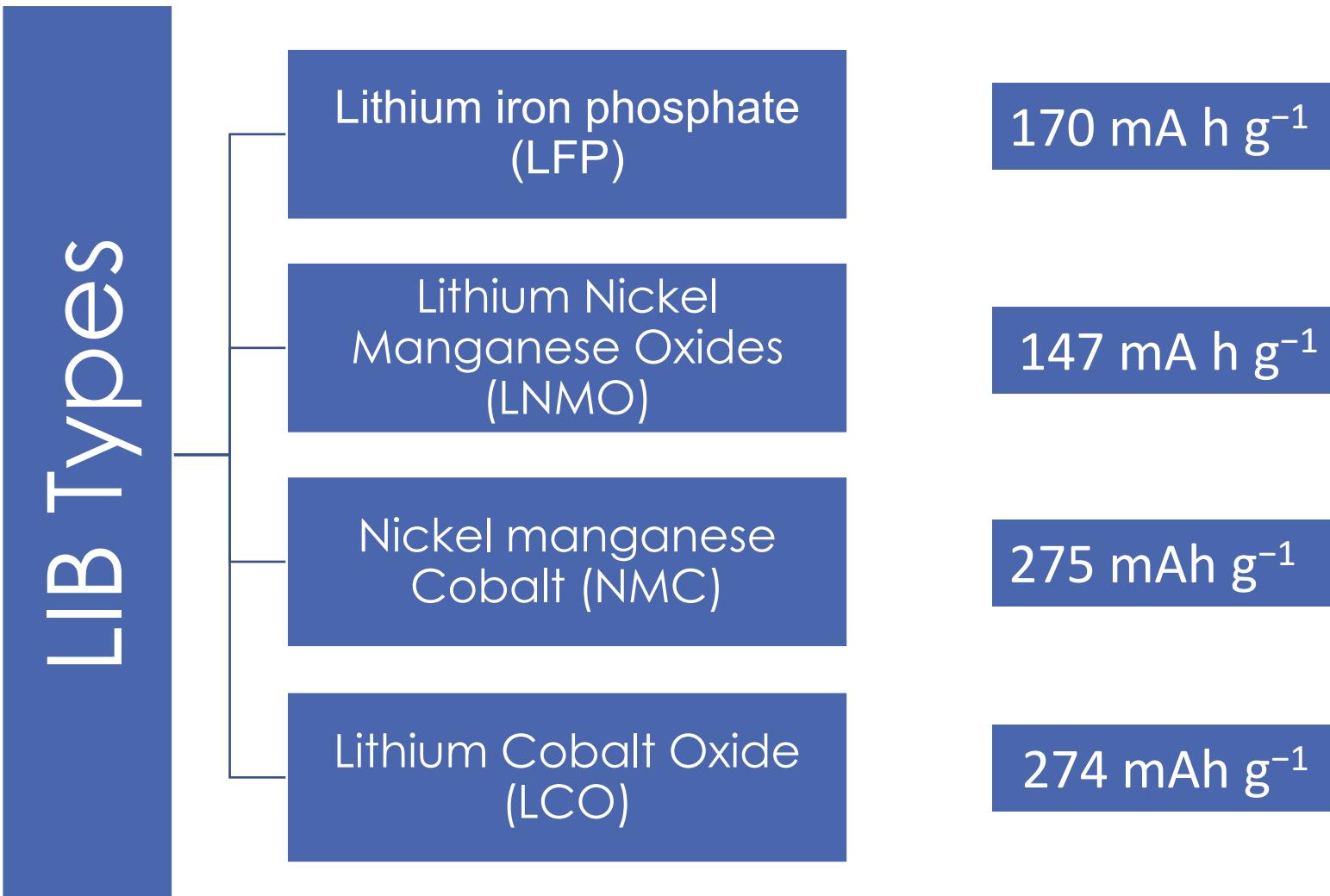


Fig . Faradion cell

Gigafactory production timeline

- 1.9 GWh production by 2025 and 35GWh production by 2040 planned

Different chemistries of LIB with their theoretical capacity

Source : CES analysis and research