

MORE BATTERY MATERIALS OF POSSIBLE INTEREST

Shutterstock image

Linda Gaines

Transportation Systems Analyst
Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory
lgaines@anl.gov

NAATBatt Annual Meeting
February 2023

GOALS WERE TO REDUCE CO₂ AND ELIMINATE OIL IMPORTS

But we are again (still?) reliant on imports

- The focus has been on materials that have now become critical

- Cobalt
 - Nickel
 - Lithium
 - Graphite

The lack of a substantial lithium battery supply chain in the United States and the lack of secure access to energy materials pose serious threats to U.S. national and economic security. [Li-Bridge Report, February 2023](#)

CURRENT PATH MAY BE UNREALISTIC

Expert panel evaluated likelihood of achieving projected growth

- Probable
- Possible
- **Improbable**
- Impossible

Several Li-Bridge participants anticipate a worldwide shortfall in supplies of critical minerals and energy materials within a four-to-twelve-year time frame (before new foreign and domestic sources of supply can be brought online). [Li-Bridge Report February 2023](#)

Future demand requirements for lithium, graphite, cobalt & nickel are staggering

WHATEVER PATH WE TAKE, USING LESS EASES THE WAY

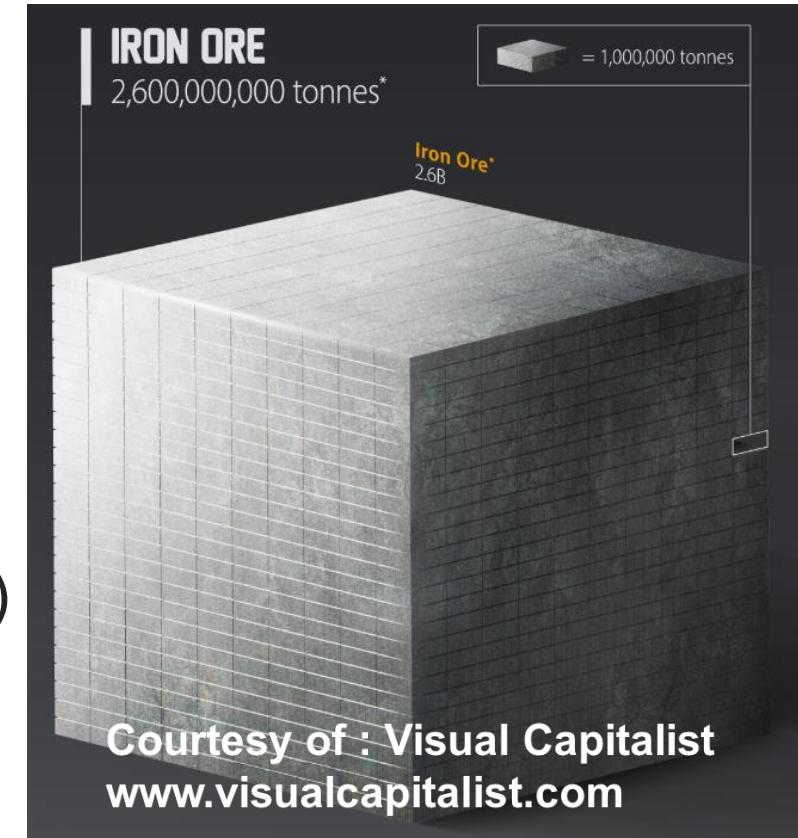
Technology options can enable sufficient range with less material

- Batteries with higher energy density (e.g., solid-state)
- Plug-in hybrid vehicles
 - Range-extended EV is less complex than dual propulsion system PHEV
 - Supplementary fuel can be biofuel
- In-road charging
- *Battery swapping*
- Modular or hybrid battery design for flexibility
 - Easily available add-ons or vehicle rentals
- Car or ride sharing

MIGHT OTHER PATHS BE MORE PROMISING?

Consider less scarce domestic materials (and more efficient batteries)

- Phosphorus and iron
- Manganese
- Sodium
- Sulfur
- Lithium metal
 - Solid electrolyte materials?
 - Zirconium
 - Yttrium
 - Indium
 - Lanthanum
- Copper


Shutterstock image

Consider trying to leapfrog instead of playing catch-up.

PHOSPHORUS AND IRON ARE ABUNDANT IN US

US has a head start for producing lithium iron phosphate (LFP)

- LFP plants planned in St. Louis (ICL) and Quebec (First Phosphate)
- US has onshore:
 - Phosphate rock
 - Chemical grade phosphoric acid capacity
 - Might require expansion
 - Unlimited iron supply and refining capacity
 - Sufficient lithium for a few years
 - Resources for a complete domestic supply chain
- About 110 kg Fe and 70 kg P (including electrolyte salt) needed per car
 - Tighter constraint is P (~2 million T/y mined in US)
 - Enough for ~30 million cars annually

MANGANESE IS ABUNDANT GLOBALLY

Several Mn-based cathodes are under consideration

- US reserves are poor
 - Ore containing 20% or more Mn not mined domestically since 1970.
 - Last USGS estimate 230 MT (enough for 34B 100 kWh batteries)
 - Too expensive to mine in US
- Ore and ferromanganese are imported from Gabon (67%), South Africa (19%), Mexico (12%)
 - Mn content ranges from 35-54% for Mn and from 74-95% for ferromanganese
 - Reserve 1.5 BT, resources larger

SODIUM SUPPLY IS NOT AN ISSUE

Sodium-ion batteries could relieve the lithium supply crunch

- US produces 42 million T/y salt (NaCl)
 - 94% from Kansas, Louisiana, Michigan, New York, Ohio, Texas, and Utah
 - 39% used by chemical industry
- Potential for extraction from seawater is practically unlimited

Shutterstock image

SULFUR IS A WASTE PRODUCT

From petroleum refining and copper smelting

- The incentive for recycling Li-S batteries could be low
 - Depends on Li price and whether any valuable structure can be recovered
- 2022 production 8 million T
 - 1.6 MT exported
 - 1.9 MT imported
- Main use is as sulfuric acid
 - Phosphoric acid is produced from phosphate rock and sulfuric acid
 - So S is needed for LFP as well as Li-S
- And don't forget about Li-air!

Shutterstock image

WHAT WOULD BE NEEDED FOR SOLID-STATE BATTERIES?

Anode and electrolyte are different

- Lithium metal needed for the anode
- SSB expert identifies 3 major contenders for solid electrolyte
 - Li argyrodites ($\text{Li}_6\text{PS}_5\text{Cl}$, $\text{Li}_6\text{PS}_5\text{Br}$)
 - Li garnets ($\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ with either Ta, Al, or Ga dopants)
 - Li halides (Li_3YCl_6 , Li_3AlF_6 , Li_3InCl_6 , etc.)
- Halide elements not scarce
- Dopants only needed in trace quantities

Elements to look at:
Zirconium
Indium
Yttrium
Lanthanum

US ALREADY PRODUCES LITHIUM METAL

Rapid expansion could enable US to be a long-term leader as market grows

- Li metal capacity would be needed for solid-state batteries
- US is a player in this arena
- US does have Li reserves
 - Can supply our own needs, but cost uncertain
 - Geothermal brine coproduction lab call issued
- 100's of 1000's of tons may be needed, vs. current 5000 T (Li⁰) market*
- Need better production technology, on large scale
- **US has potential to get ahead of the curve on Li metal**
 - Can control our entire Li metal supply chain

	2020 BG Li Metal Capacity	2050 BG Li Metal Demand
US	0.55	--
World	2.5	1,000

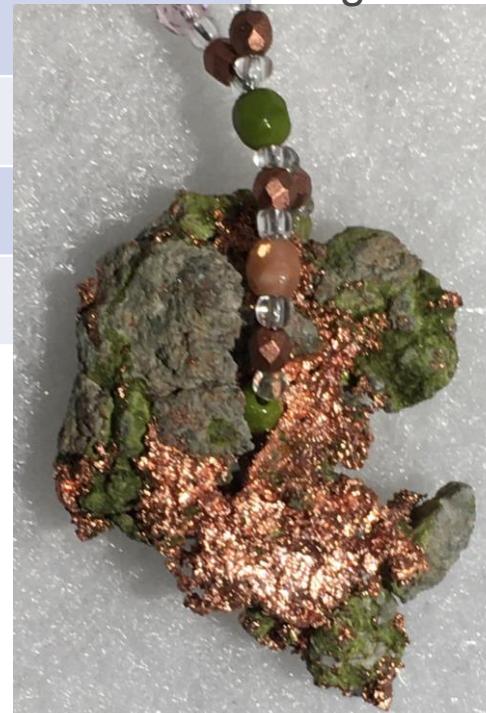
Units: 1000 metric tons

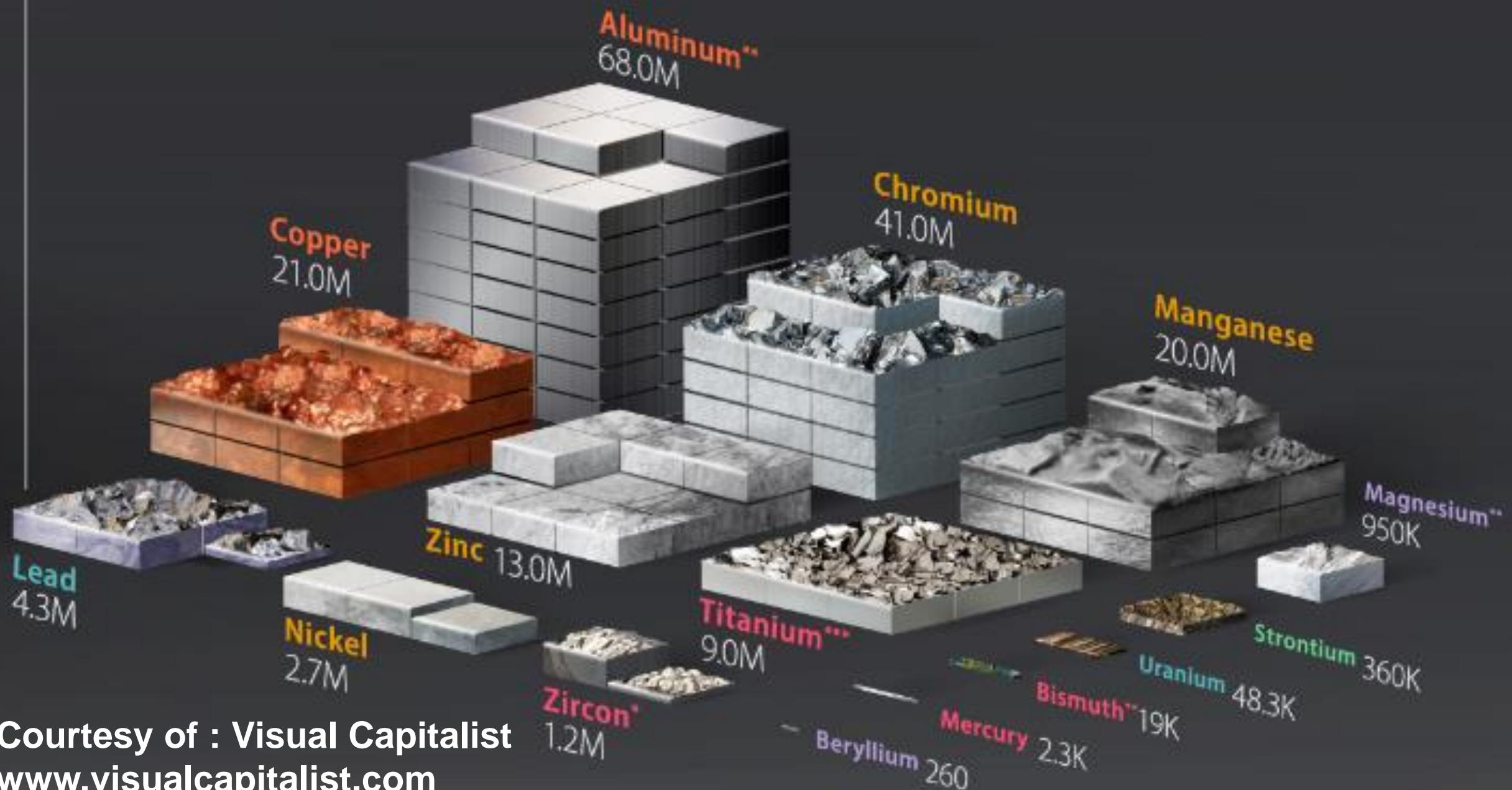
* Half of Li metal is battery grade

ONLY ZR IS A COMMODITY CHEMICAL

US has significant production and reserves

Element	Production (T)	Imports (T)	Import sources	Exports (T)	Reserves (T)	kg per EV
Zirconium	<100,000 (ore)	35,000	various	14,000	500,000	50
Indium	--	170	China (31%), Canada (23%), ROK (20%)	--	--	?
Yttrium	--	1000	China (74%)	4	.012% of Mt. Pass	?
Lanthanum	--	--	China (74%)	--	~25 % of RE	


Zr Import sources: Zirconium ores and concentrates: South Africa, 51%; Senegal, 25%; Australia, 21%;. Zirconium, unwrought, including powder: China, 89%; Germany, 8%. Zirconium, wrought: France, 62%; Germany, 19%; Belgium, 6%.

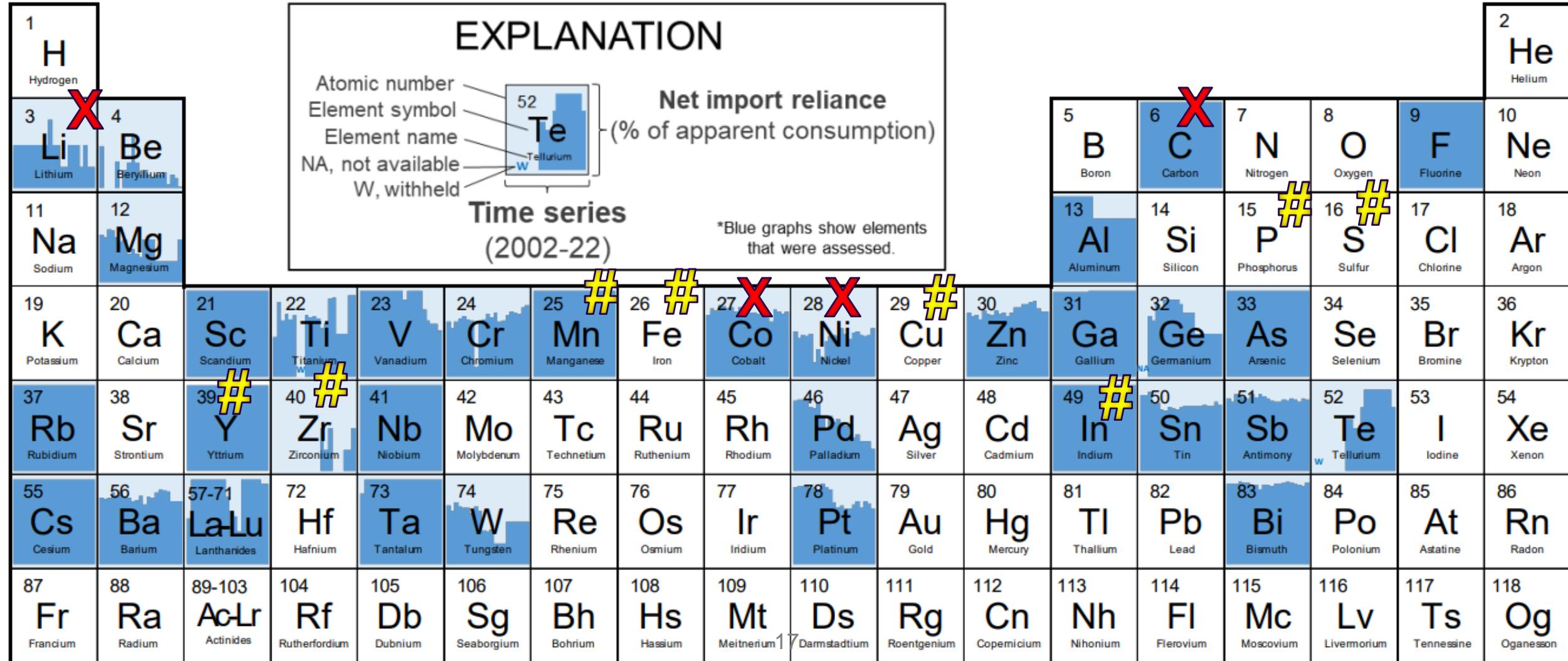

COPPER WILL NOT LIMIT GROWTH

EV does use more copper than ICE

Component	Cu required (lb)	# needed per vehicle	Total Cu (lb)	% of total Cu	
Vehicle body	288.9	1	288.9	71.5	
Battery	111.0	1	111.0	27.5	Native copper From Michigan UP
Home charger	4.4	0.8	3.5	0.9	
Level 2	15.4	0.04	0.6	0.1	
DCFC	48.4	0.0017	0.08	0.02	
TOTAL			404.08	100	

• One million tonnes refined in US in 2022.
• Enough for 5 million cars annually
• Clean energy will dominate use, but US reserves 44 million T
• So domestic supply is not a major issue.

Courtesy of : Visual Capitalist
www.visualcapitalist.com



Courtesy of : Visual Capitalist
www.visualcapitalist.com

US IMPORT RELIANCE FOR CRITICAL MINERALS

Figure 9.—20-Year Trend of U.S. Net Import Reliance for Critical Minerals

X= elements usually discussed; # = elements in this presentation

Thank you!
US Department of Energy, Vehicle Technologies Office

This presentation has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.