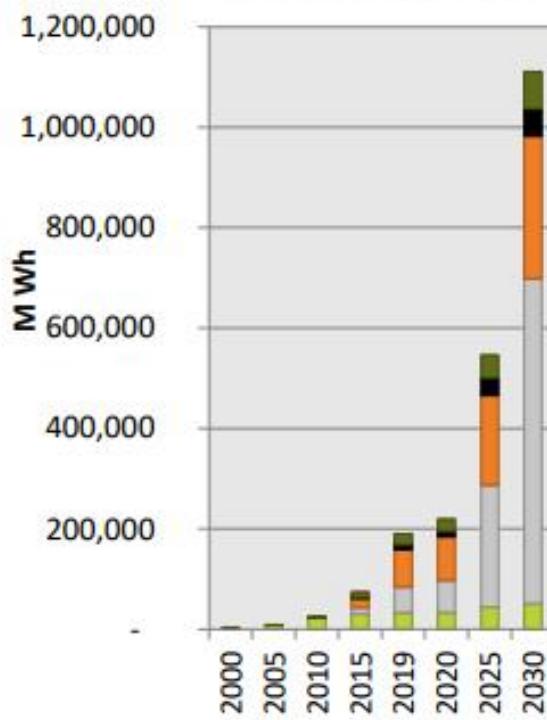


Beyond Li-Ion High Energy & Power Cells Market Review 2022 (>300Wh/kg)

December 2021

**Shmuel De-Leon
Shmuel De-Leon Energy, Ltd.
www.sdle.co.il, shmuel@sdle.co.il**


The battery industry is Fast Growing

LI-ION BATTERY MARKET FORECAST

From 160 GWh in 2019 to >1,1 TWh

CAGR 2015/2030
+20 % per year in Volume

Li-ion Battery sales,
MWh, Worldwide, 2000-2030

CAGR 15/30
(Optimistic)

■ Others

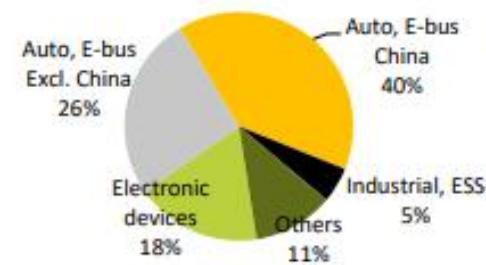
14%

■ Industrial, ESS

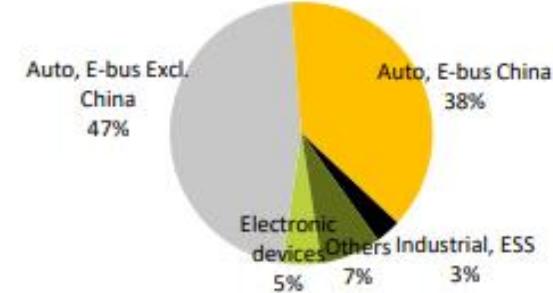
21%

■ Auto, E-bus China

20%


■ Auto, e-bus Excl.
China

30%


■ Electronic devices

4%

2019: >190 GWh

2030: >1100 GWh

Others: medical devices, power tools, gardening tools, e-bikes...

Source: AVICENNE Energy 2020 - COVID 19 impact partially implemented as the crisis is not over - Impact could be worst

realistic scenario

Best Rechargeable Systems

Performance in Mass Production

	Lead Acid	NiCD	NiMH		Li-Titanate**	Li-iron Phosphate	Li-ion hard case NMC*, **	Li-ion pouch LCO*, **
(Wh/kg)	30-35	45-55	60-100		73	161	260	275
(Wh/l)	99	184	397		131	300	736	775
Nominal Voltage	2V	1.25V	1.25V		2.4V	3.2V	3.5-3.8V	3.6 – 3.8V
Cycle Life (to 80% of initial capacity)	200 to 300	1500	300 to 500		6000 - 60000	1500 - 2000	300 to 1000	300 to 500
Self-discharge [Month]	5%	20%	30%		3%	3%	1%	1%
Cell Model	YUASA NPH12-12	SANYO KR-1500AUL	SANYO HR-3U		Toshiba AP146396HA	Saft VL 45 FEE	LG INR18650 MJ1	High Power China

* LCO, LMO, NCA, NMC, LNFM Cathodes

**Graphite/Silicon Anode, LTO Anodes

Battery Technologies with Potential for Technology Break- Through

Current best performance for Li-Ion cells under mass production are 275Wh/kg, 750Wh/l, 500-1000 cycles.

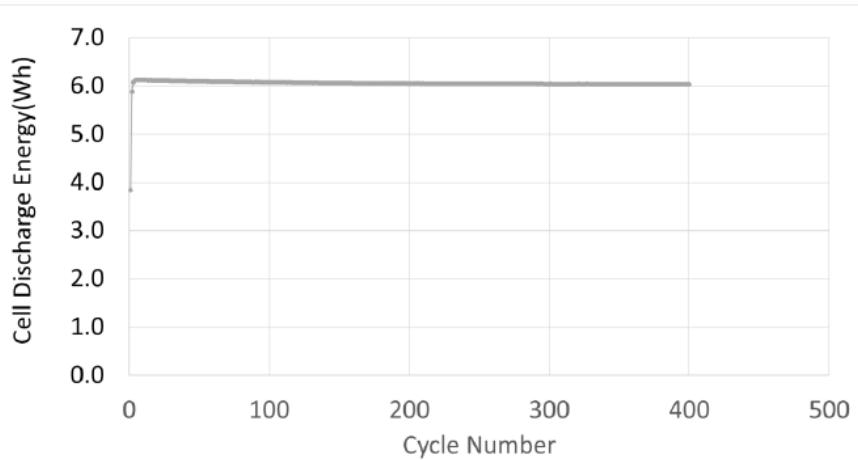
What are the future technologies with potential energy densities >300Wh/kg, 1200Wh/l

- Li-Ion Silicon based anode
- Li-Ion Solid Electrolyte
- Lithium metal with Sulfur/NMC cathode
- Li-Ion with High Voltage LCO Cathode
- Li-Air with lithium metal anode

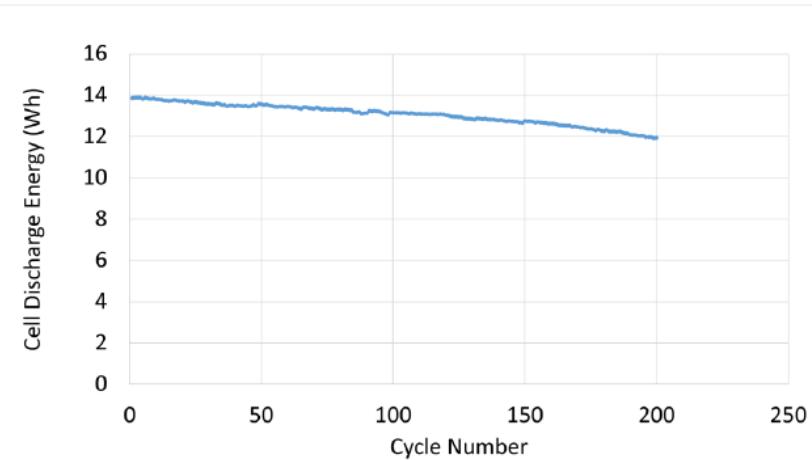
American Lithium Energy

Introduction to ALE 4Ah Nano 18650 Cells

- High specific energy: ~330 Wh/kg
- High power: Up to 700 W/Kg
- Excellent low temperature performance
 - >60% capacity at -40°C and at 0.2C rate
- Meet the cycle requirement of the missions 1, 2 and 4 now per Space System Command, the US Space Force. For other missions, the testing is still on going
- Meet UN 38.03 requirement
 - Pass impact, crush, overcharge and 130°C hot box tests per UN 38.03 standard



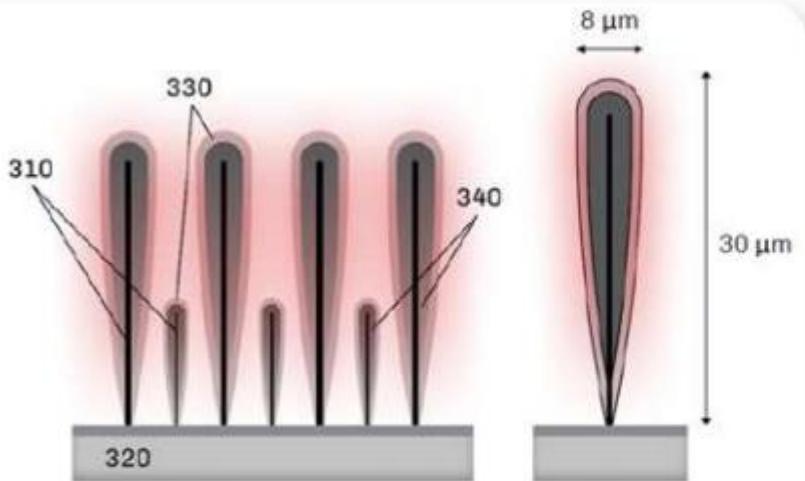
AMERICAN LITHIUM ENERGY


Introduction to ALE 4Ah Nano 18650 Cells

Cycle Life: 40%DOD and 100%DOD

40% DOD

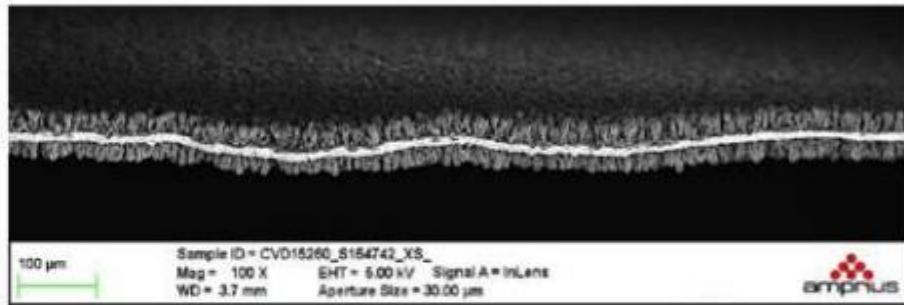
100%DOD



- The cycle life procedures are per S-144 requirement
- The cell energy retention is about 97.6% after 400 cycles at 40% DOD
- The cell energy retention is about 87% of its energy after 200 cycles at 100% DOD

Amprius (100% Si Anode, LCO/NMC Cathode)

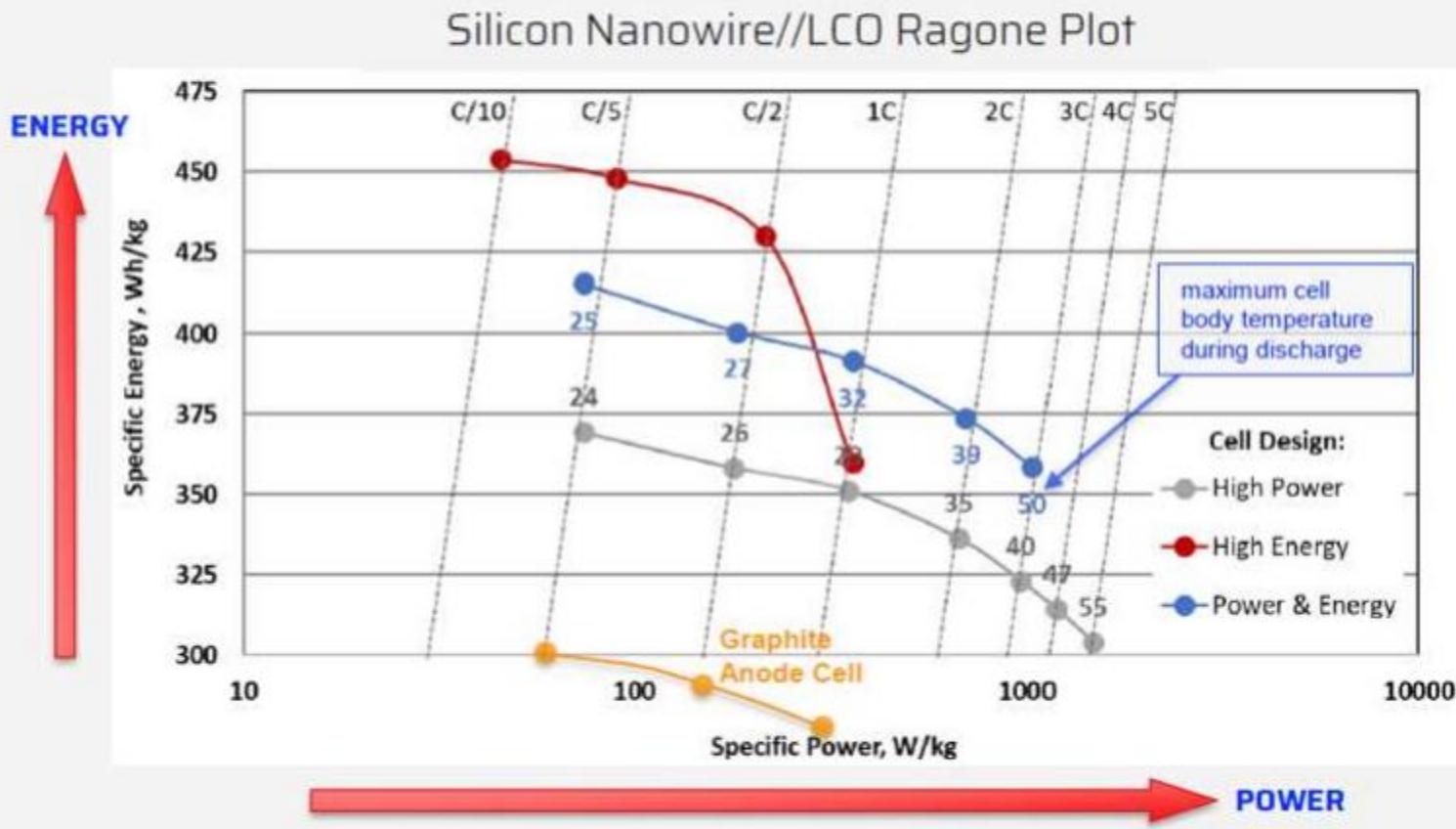
THE AMPRIUS SILICON NANOWIRE ANODE SOLUTION


A New Structure for 100% Silicon Based on Nanowires

310 - Conductive nanowire grown from substrate

340 - Bulk coating of low density, porous amorphous silicon

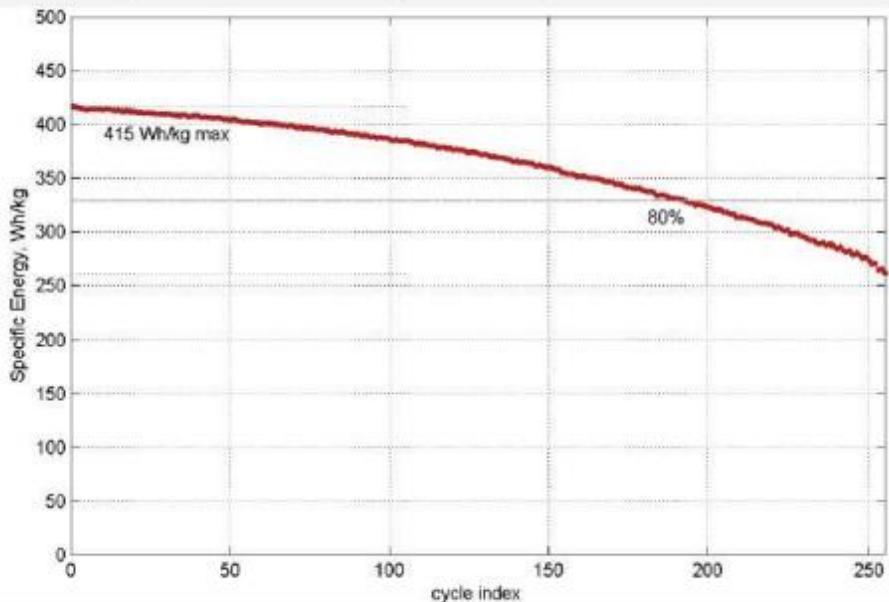
330 - Thin layer of high-density amorphous silicon

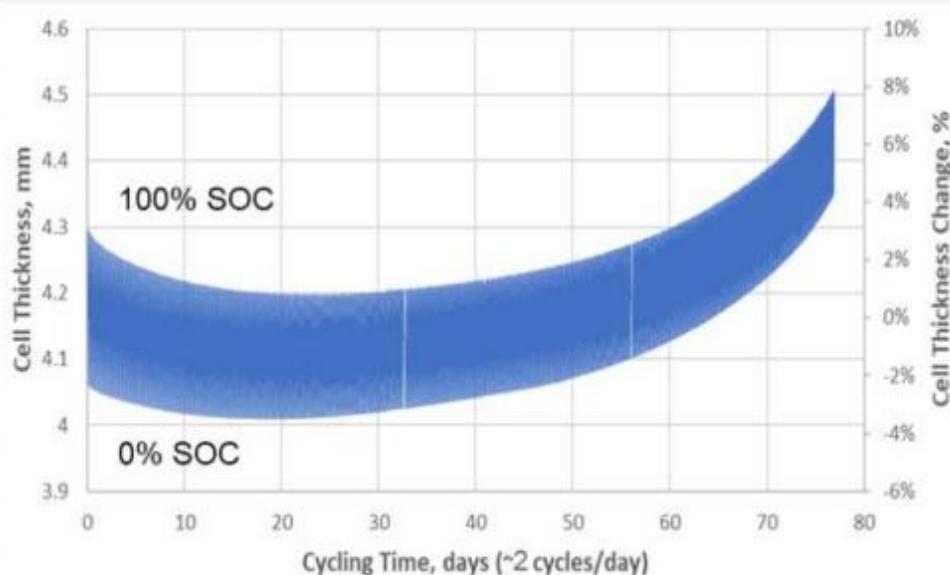


KEY BENEFITS

- Micro & Macro porosity- solves swell problem
- Nanowire rooted mechanically and electrically continuous with substrate
- Stable Solid Electrolyte Interphase (SEI)

HIGH ENERGY AND POWER CAPABILITY


Amprius' cells enable the highest energy and power


MULTIPLE CHEMISTRIES WITH LONG CYCLE LIFE

Long Endurance Drone Batteries

Cycle Life with High Voltage LCO

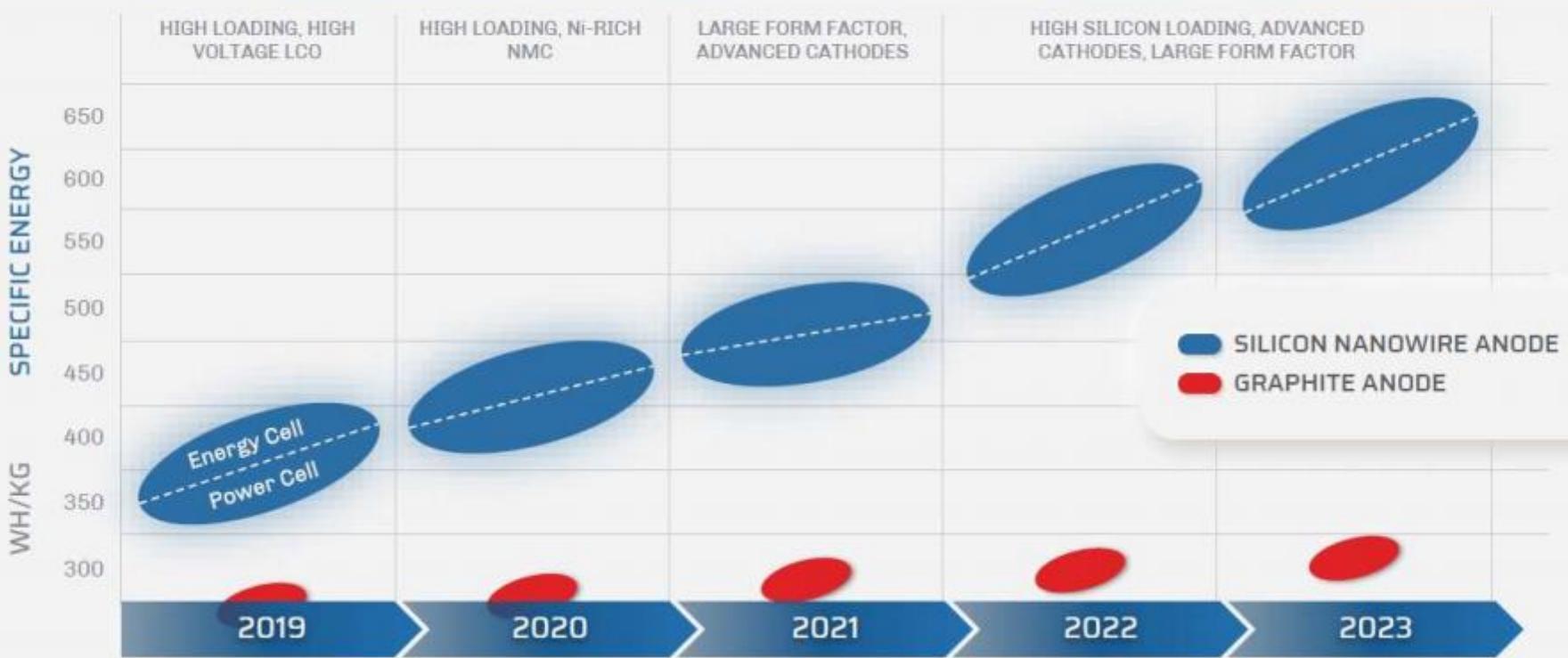
Cell Thickness during Cycling

Cycling at C/5 for Long Endurance UAV applications

MANUFACTURING: ROLL-TO-ROLL FOR SILICON NANOWIRE ANODE PRODUCTION

Pilot Scale Manufacturing – demonstrated scalability with Pilot Tool

Bare Foil In and Finished Anode Out



Replaces:

- powder mixing
- slurry preparation
- roll coating (2X)
- drying
- calendaring

ROAD MAP: SPECIFIC ENERGY

ACTIVE MATERIALS IMPROVEMENT AND ACTIVE/INACTIVE RATIO INCREASE

Cuberg/Northvolt – Lithium Metal Anode with High Voltage Cathode

The Cuberg cell

High-performance and scalable design

High-performance, scalable architecture

- Energy-dense lithium metal anode, providing exceptional specific energy and power
- Proprietary non-flammable liquid electrolyte to stabilize high-energy anode and enable long cycle life
- Industry-standard Ni-rich cathode and separator

Cuberg manufactures large-format pouch cells

- Scalable production process built on existing Li-ion battery manufacturing processes
- Step-change improvement in manufacturability compared to solid-state batteries
- Prototype samples independently validated and also evaluated by customers around the world

HV-5P (PROTOTYPE V3) RECHARGEABLE LITHIUM BATTERY

Description

The HV Series is a next-generation battery cell that goes beyond lithium-ion to provide exceptional energy density and unprecedented safety.

Building on the success of the HT Series, this battery incorporates our proprietary and highly stable electrolyte, lithium metal anode, and high-voltage cathode for a battery that is ideally suited to replace power solutions wherever energy and stability are vital.

Features

Energy Improvement: Our innovative electrolyte is electrochemically stable against commercial high-energy metal oxide cathodes, and it forms a stable passivating layer on the energy-dense lithium metal anode. This increases cell energy to 405 Wh kg⁻¹ and 800 Wh L⁻¹ – up to 80% improvements over comparable lithium-ion technology.

Safety Profile: Our new electrolyte formulation excludes organic carbonate-based solvents. The solvents and salts we use are completely non-flammable, so our cells are much less likely to smoke, ignite, or explode compared to lithium-ion cells.

Thermal Stability: At elevated temperatures where most rechargeable systems degrade rapidly or fail, Cuberg's battery thrives and actually delivers increased power, capacity, and longevity.

Main Applications

- **Drones, Air Taxis, and Electric Planes**

By using a lithium metal anode, we can make batteries light enough to power long-term electrified flight – an impossibility with lithium-ion systems. Our battery also delivers world-beating power density and abuse tolerance, allowing it to sustain even the most aggressive eVTOL conditions. Finally, the chemistry's ability to operate reliably and stably at high temperature reduces the need for pack cooling, which further increases flight time.

- **Military & Defense**

Warfighters can move faster and talk longer equipped with our high specific energy battery. The completely nonflammable electrolyte mitigates risk of explosion or fire if the battery is punctured or otherwise damaged.

- **Ground Mobility**

From electric cars to scooters, our batteries enable longer range and improved safety compared to lithium-ion. The technology represents a scalable and near-term solution for powering the future of electric mobility.

Sample Data

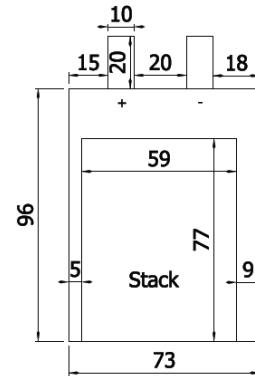
Discharge voltage profiles at 25 °C

Product Specifications

Size & Form

Form Factor	Pouch Cell	
Electrode Stack Dimensions	77 x 59 x 5.3	mm
Mass	48.1	g
Volume	24	cm ³
Required Compression	>200	kPa

Energy & Power


Cell Energy	19.4	Wh
Cell Capacity	5.1	Ah
Charge Cut-off Voltage	4.35	V
Nominal Discharge Voltage	3.8	V
Discharge Cut-off Voltage	3.0	V
Max. Constant Discharge Current	10	A
Max. 60s Pulse Discharge Current	30	A
Max. Constant Charge Current	1.0	A
DCIR (HPPC 10s Pulse)	20	mΩ
DCIR (Continuous Discharge)	40	mΩ
Nominal Energy Density	800	Wh L ⁻¹
Nominal Specific Energy	405	Wh kg ⁻¹
Max. Continuous Specific Power	740	W kg ⁻¹
Max. 60s Pulse Specific Power	1,800	W kg ⁻¹

Safety & Durability

Thermal Safety Limit	>130	°C
Nail Penetration Test	No explosion, flames, or smoke	
Discharge Temperature Range	-20 to 60	°C
Charge Temperature Range	-10 to 50	°C
Storage Temperature Range	-20 to 45	°C
Cycle Life (>80% initial capacity)	175+	at C/6 cycles
Self Discharge (25 °C, 3.8 V)	<1	% month ⁻¹
Shelf Life (25 °C)	>15	years
Calendar Life (25 °C)	>10	years

All specifications are provided at 25 °C unless otherwise specified.

Cell Dimensions

The dimensions of the pouch can be customized for the specific requirements of each customer. Our standard 5-Ah cell design is 77 x 59 x 5.3 mm (LxWxH).

Certifications

The HV series is proudly designed to comply with industry standard safety and performance certifications, including:

- UL1642
- IEC62133
- UN/DOT38.3
- MIL-STD-810G
- NAVSEA S9310

Doc. N° 191017-01

Specifications contained herein represent projections based on current laboratory data. As research and development is ongoing, all specifications are subject to change without notice.

C U B E R G

Cuberg, Inc.

1198 65th Street, Suite 170
Emeryville, CA 94608 USA
1.510.725.4200
info@cuberg.net

EoCell (High Energy Silicon + Non-Flammable Electrolyte)

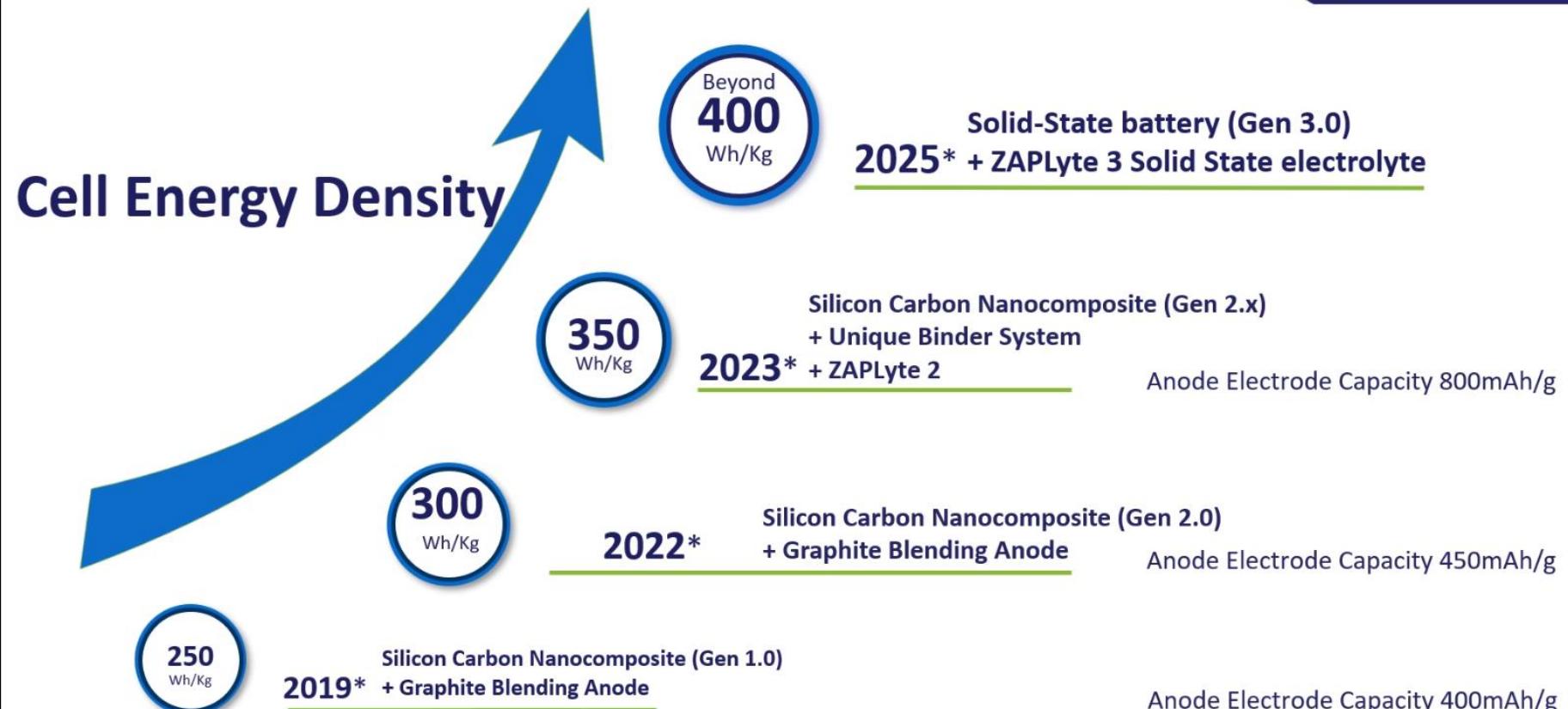
EoCell at a Glance

Specializing
In:

High-Energy Nano-Silicon Anode Materials
Non-Flammable Electrolyte Technologies
Both for Advanced Silicon & Solid-State Batteries

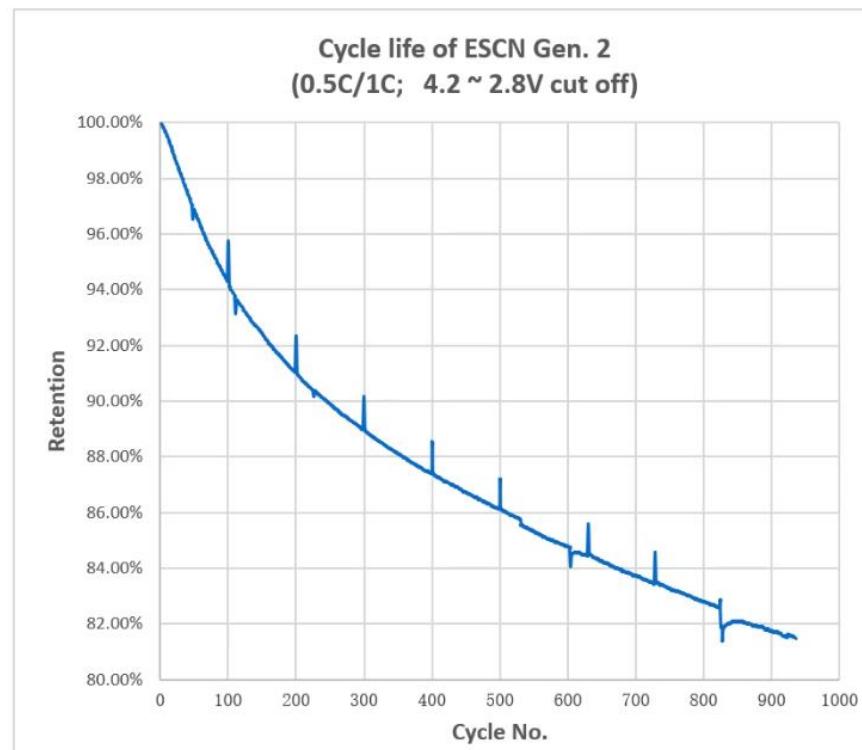
- Silicon Valley, founded in 2015
- Funded \$30M by Dragon Group International (DGI) and Yinlong Energy Company (YLE) Both are active strategic partners.
- ESCN Gen 1.0 Si battery development (completed in 2019)
 - : 250 Wh/Kg high energy density Pouch 48Ah and 60Ah
 - : Si Gen 1.0 (600~900mAh/g)
- ESCN Gen 2.0 Si battery development – Under development
 - : 300 Wh/Kg High energy density (Pouch 78Ah) - 4Q 2022 sample available
 - : ESCN Gen 2.0 - 1300 mAh/g : sample available,
 - 1600~1800mAh/g : 1Q 2022 sample available
 - : Non-flammable Electrolyte : ZAPlyte 1
- ESCN Gen 3.0 solid state battery development (400 Wh/Kg)– Under development

HQ in San Jose



250 Wh/Kg Pouch Cell

2


Technology Overview – Cell Roadmap

300 Wh/kg Pouch Cell (W/ESCN Gen 2) – under development

Specifications		Current status (A SPL Cell, Sept. '21)
Size (Pouch, H x W x T) including terrace		224*191*9.9mm
Weight		938g
Capacity	1/3C (Nom.)	77.0 Ah
Max. / Nominal / Min. voltage		4.2V / 3.60V / 2.5V
Energy density (Wh/kg)**		295 Wh/kg
Energy density (Wh/l)**		693 Wh/l
Cycle life (@ 0.5C/1C, DOD 100%, 25°C)		Expected >1000 cycles

Enevate Corp (70% Si Anode – NMC Cathode)

Pioneering advancements in silicon-dominant anodes
leveraging accelerated battery testing & machine learning

Pioneers Founded 2005 in Southern California, USA

- Projected to be one of **first companies achieving next-gen silicon li-ion commercialization** going to production in 2022

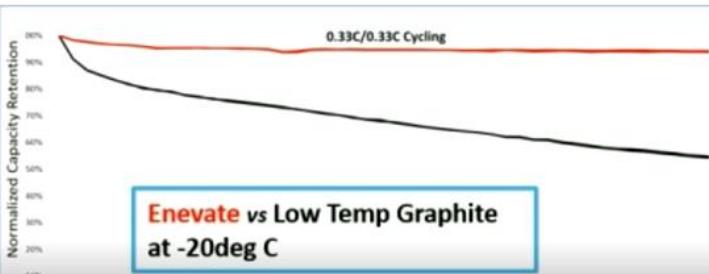
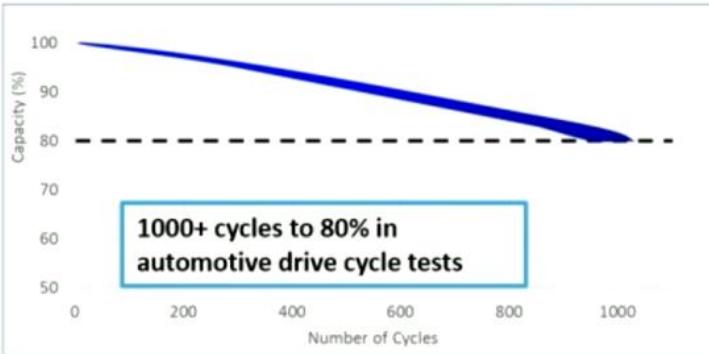
Vision A cleaner and sustainable environment through a variety of battery powered applications and products that are accessible and affordable to everyone

Business Model Battery technology licensing & transfer

- Non-capital intensive, leverages experienced high volume & quality battery makers to supply the EV industry

Technology Developed over 10+ years with ~500 patents issued and in-process

- Tested by 20+ battery and automotive manufacturers in Asia, US, and Europe
- Licensing new 4th Generation XFC-Energy® technology with eXtreme Fast Charge for high volume commercialization



Advantages of Enevate's patented XFC-Energy® technology for high volume commercialization

- 10X faster charging, 5-minute extreme fast charge** with:
 - 30% longer range with energy densities of 800-1000 Wh/L
 - 100% better low-temperature performance
 - Safer battery with no lithium plating
 - Higher efficiencies in regenerative braking & charger utilization
- Lower cost** than today's conventional graphite Li-ion battery technology
- Designed for existing battery manufacturing equipment and processes**
- Delivers up to a 26% CO₂ greenhouse gas reduction** during manufacturing compared to conventional li-ion batteries

Leading industry investors, partners, and customers

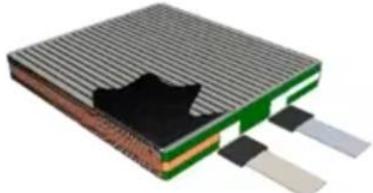
Enevate 4th Generation XFC-Energy® Technology

XFC-Energy Technology provides a comprehensive cell solution to the automotive industry, developed for gigafactory-scale manufacturing and lower cost than conventional Li-ion cells

- Processes designed for high volume continuous roll-to-roll processes of over 80 meters per minute
- Compatible with existing factories and most cathodes
 - Capable of over 1000 cycles
 - Operation at -20°C and below temperatures
 - Currently designing for 2024-2026 model year EVs
 - 2022-2023 for other applications

Conclusion

- Successfully completed large EV cell builds (30Ah – 100Ah) at multiple partners
- Actively engaged with multiple OEMs and Battery makers on Joint Development efforts.
- Licensed gateway market cell manufacturing partner
- Confirmation for 3rd party of 26% lower carbon emissions (LCA)
- Confirmation of enhanced battery safety: nail penetration test results
- Total number of patents now at ~500
- Accelerating implementation of new expanded Enevate line at new Irvine location by 2H2022



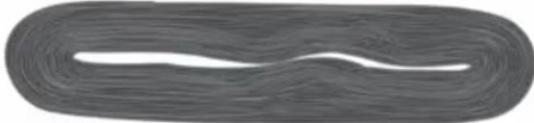
Accelerating enhancements in next gen battery technology to commercialization

Enovix (100% Si Anode, LCO Cathode)

Enovix 3D Silicon™ Cell Architecture

Enovix 3D Silicon Lithium-ion Cell

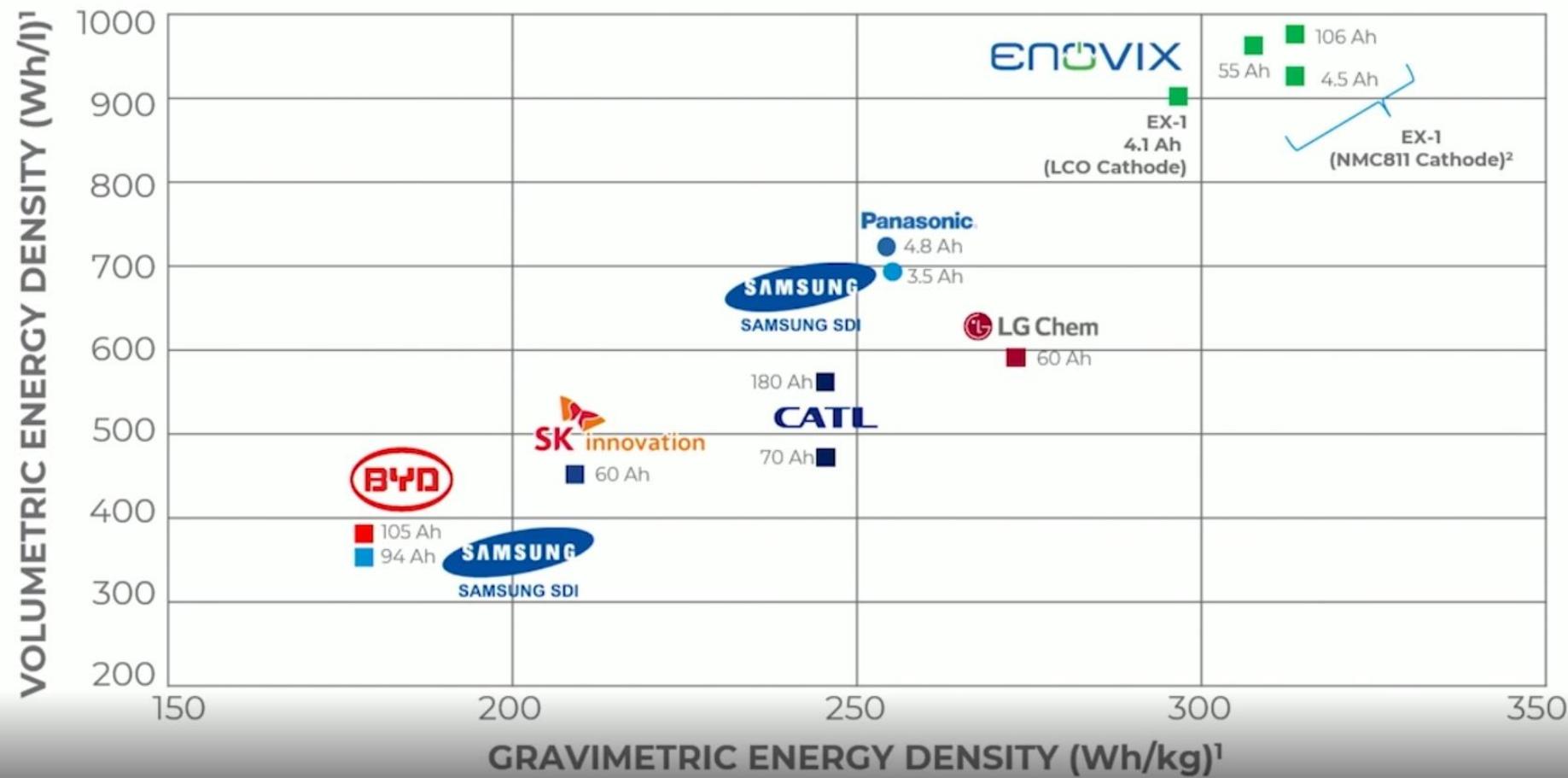
Photomicrograph Cross-Section¹


Silicon Anode Material Capacity

1800 mAh/cc²

Conventional Wound Lithium-ion Cell

Illustrated Cross-Section


Graphite Anode Material Capacity

800 mAh/cc³

¹Courtesy: Enovix Corporation. ²Calculated from theoretical capacity of 2100 mAh/cc for 1 Li titanium bronze.

ENOVIX

The Leader in Energy Density

¹Sources for competitor data: UBS Global Research, October 2020 and Samsung data sheet (Model INR18650-35E). ²Design Targets

Commercialization Roadmap

PROJECTED

2022

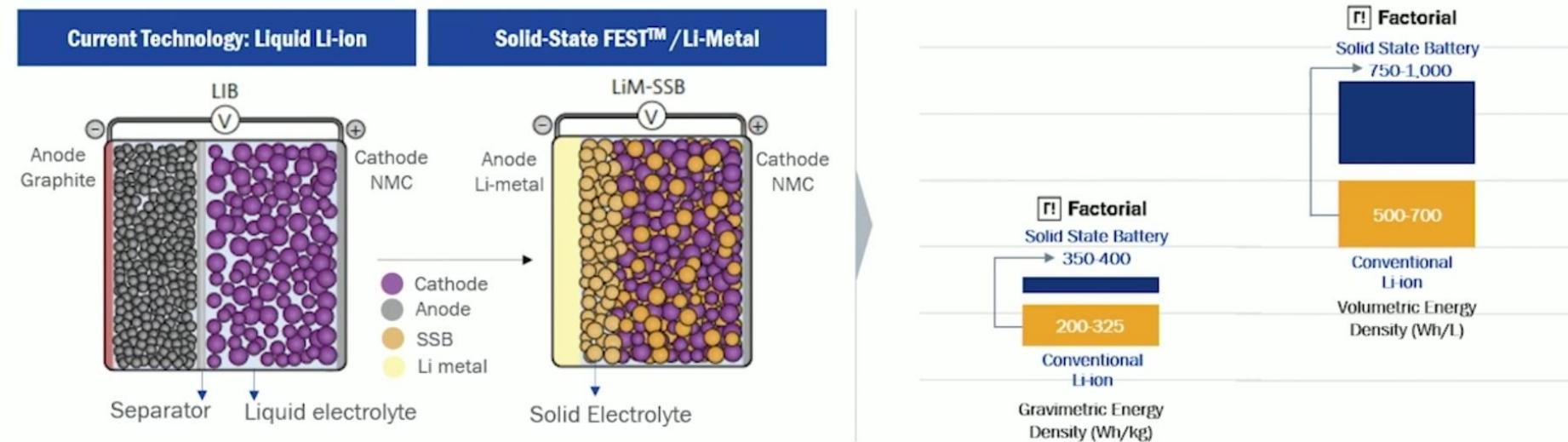
Fab 1
254 MWh Capacity
Q2 2022 First Revenue
2025E Units: 45M

2023

Fab 2
1.53 GWh Capacity
Q2 2023 First Revenue
2025E Units: 89M

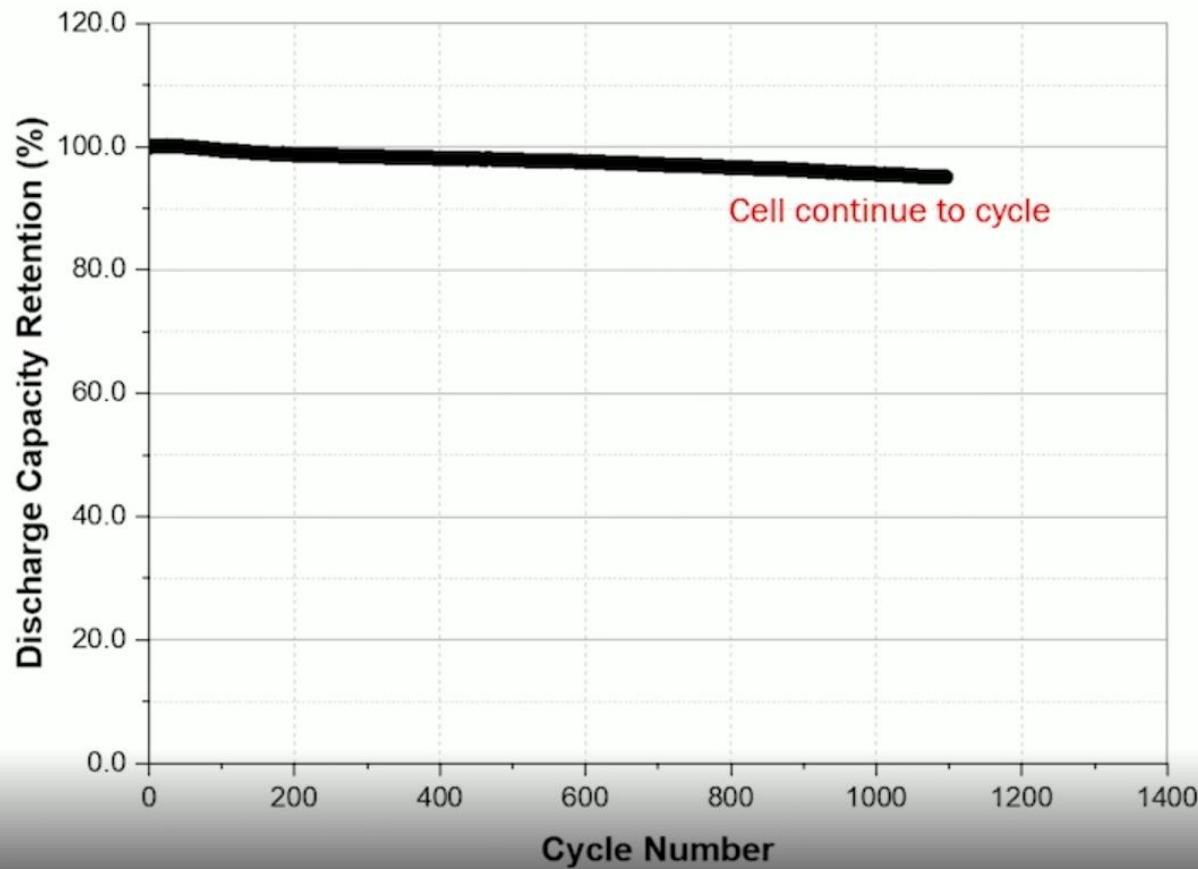
2024

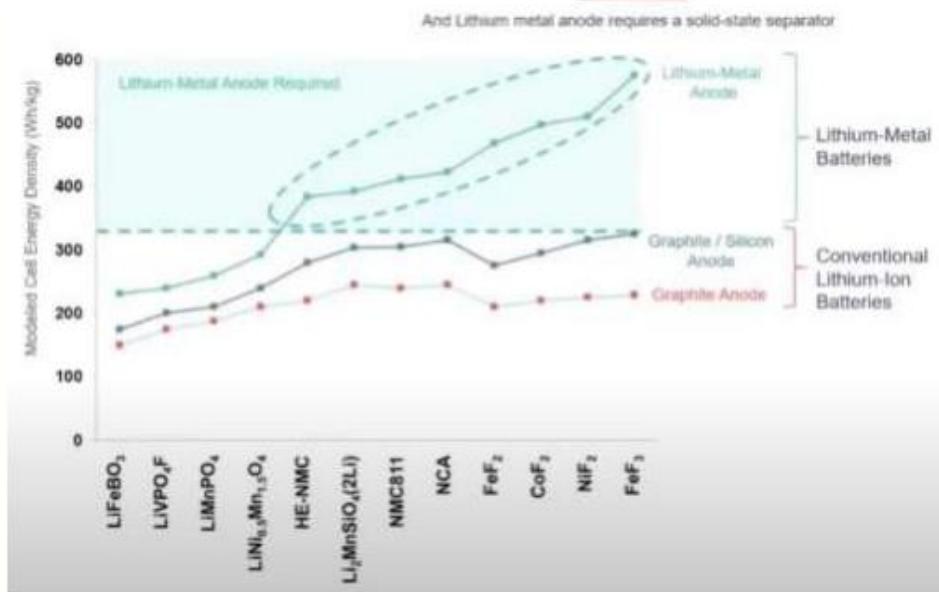
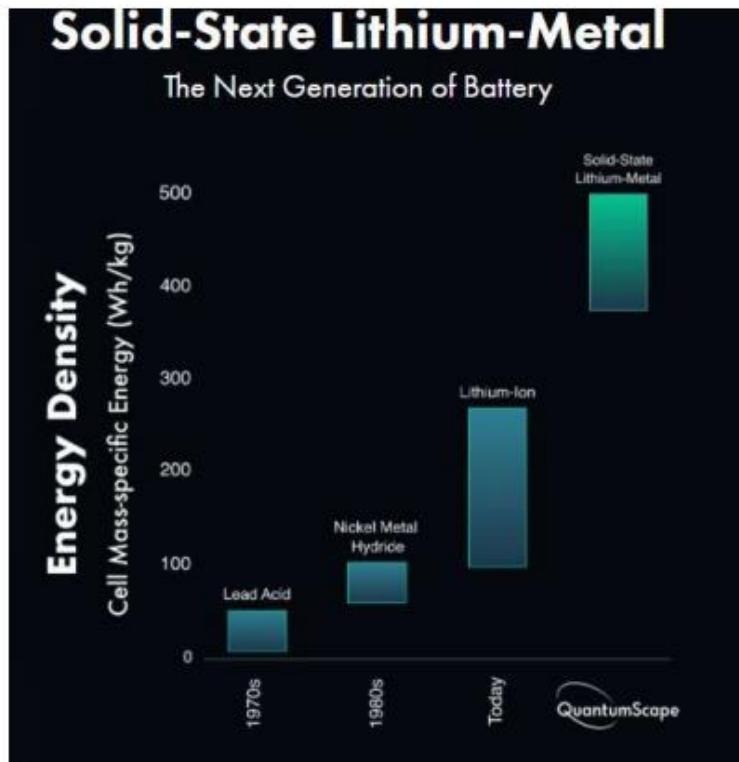
Fab 3
Auto JV or Licensing
2025 First Revenue


2025

Factorial (Lithium Metal Anode, Solid Electrolyte)

Factorial's Unique Technology to Deliver Significant Outperformance

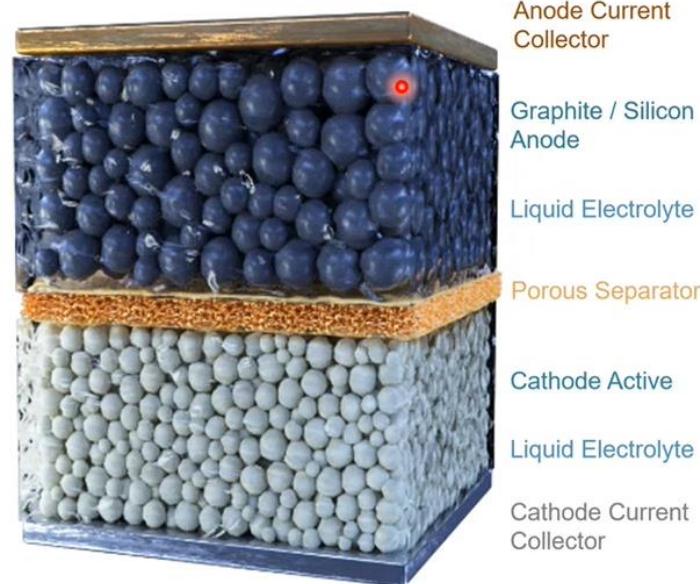

Factorial Electrolyte system technology (FEST™) delivers on more demanding OEM battery requirements



- ✓ **Safe electrolyte:** Conventional liquid electrolyte has flashing point of ~60-70°C, while Factorial Electrolyte System Technology - FEST™ is not flammable until at least 200°C
- ✓ **The most flexible system adapting to the high energy density design:** Compatible with both high capacity cathode and anode materials (cathode: 811/NCA, anode: lithium metal / silicon), to provide high energy density battery solution for future EVs
- ✓ **Easy to scale up with strong cost competitiveness to conventional Li-ion, mitigated risk in capex investment**
- ✓ **Drop-in replacement** of existing battery manufacturing process

Large Format NMC811/Graphite Cell (40Ah) at Room Temp

40Ah Pouch Cell cycling : 4.2~2.8V, 0.33C/0.5C Cycle (25 °C)

QuantumScape (Lithium Metal Anode, Solid Electrolyte)


Lithium-metal anode
necessary to achieve high
energy density

Lithium-metal cannot be
used without a solid-state
separator

QuantumScape Zero Li Anode-free Architecture

Improved cost, energy density, safety

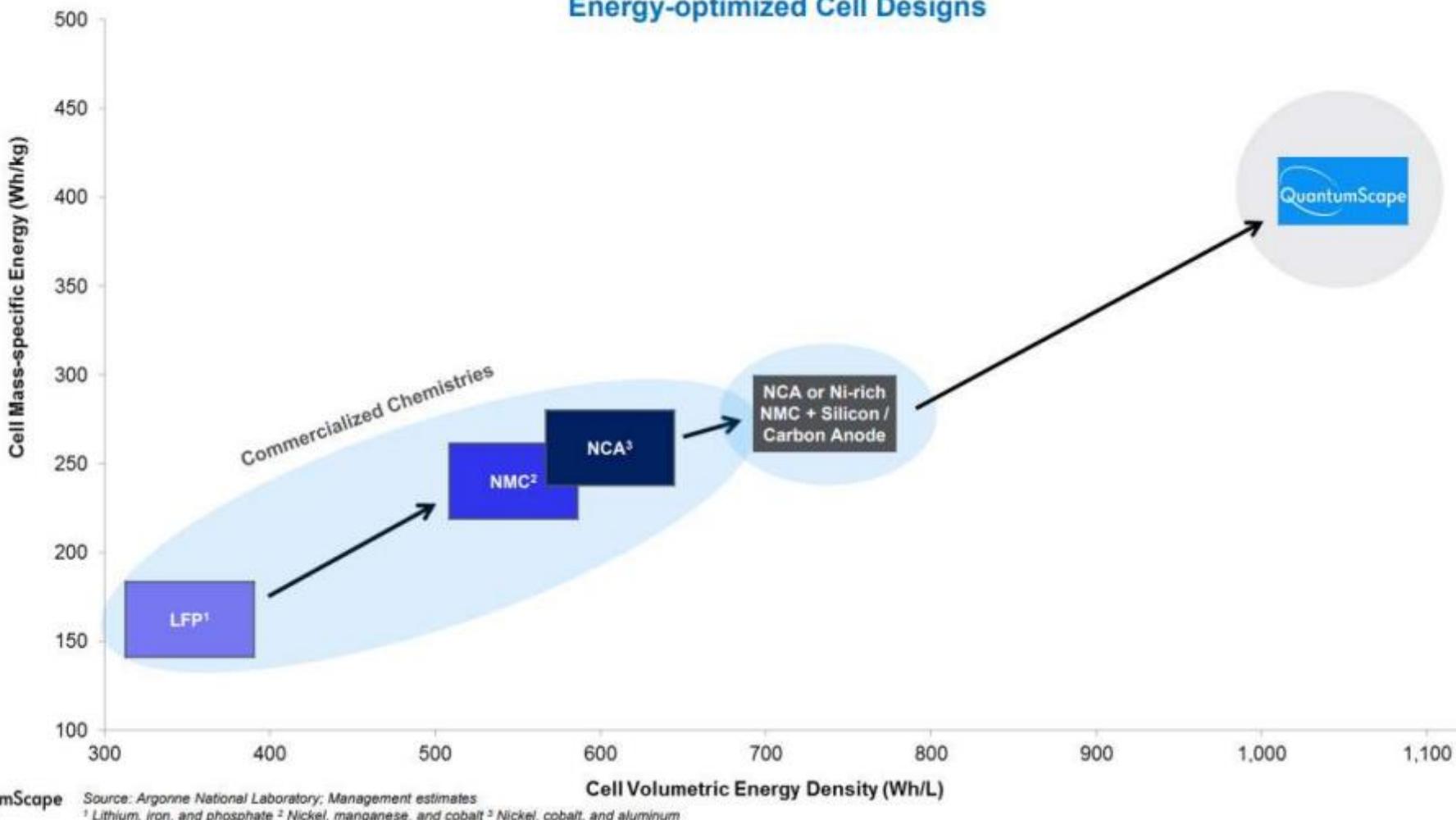
Conventional Li-ion Battery

QuantumScape Solid-State Battery

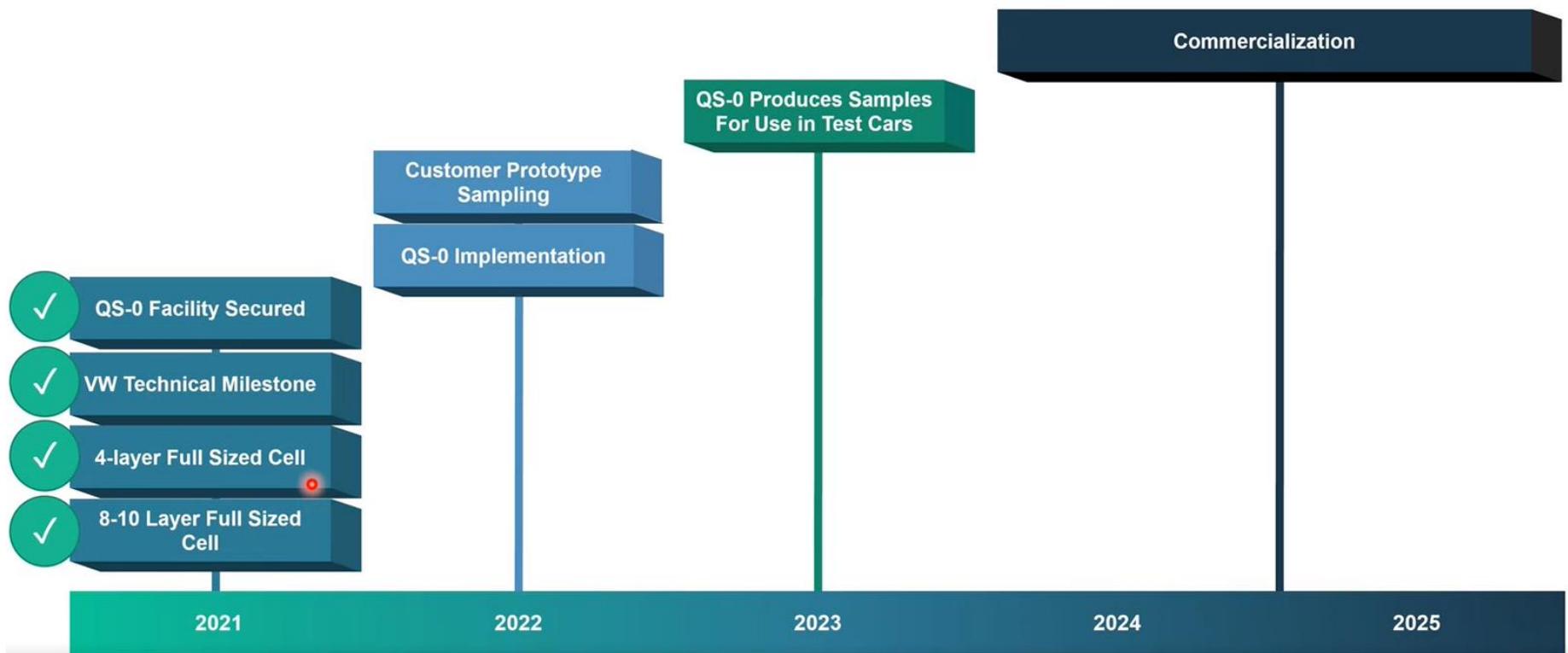
Discharged

(as manufactured)

Charged


1 Anode-free Manufacturing
Anode-free cell design with lithium plated during charge cycles

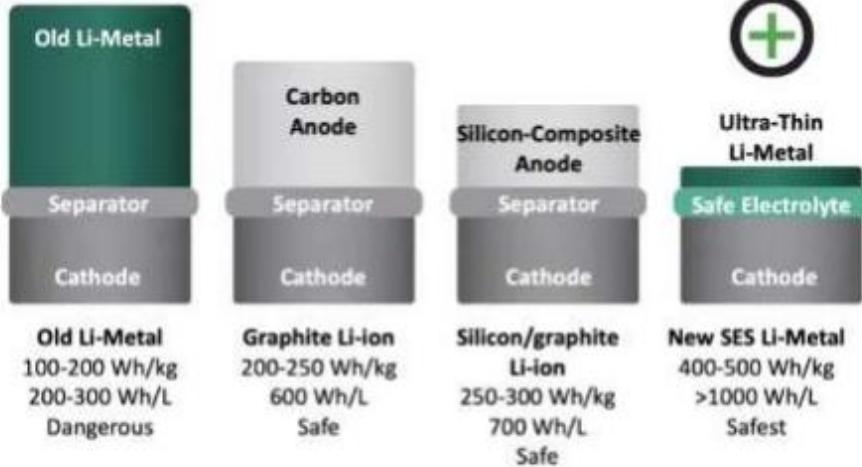
2 Solid-State Separator
Ceramic electrolyte with high dendrite resistance


3 Lithium-Metal Anode
High-rate cycling of a lithium-metal anode

QuantumScape is a Step-Function Ahead of Conventional Cells

Energy-optimized Cell Designs

Key Milestones


Solid Energy (Li Anode + Liquid Electrolyte + NMC)

solid
energy

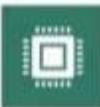
SolidEnergy Systems

Beyond Lithium™

SES has Made Fundamental Li-Metal Technology Breakthroughs

Materials

Leading proprietary technologies, strong IP portfolio and manufacturing capabilities in thin lithium foil anode and high purity lithium salt and electrolyte. Addressing lithium dendrite growth issue without compromising cell performance, manufacturability and cost


Cells

The world's leader in Li-Metal cells design, engineering and manufacturing. Largest data pool with extensive testing conditions for Li-Metal cells. Capable of passing UN38.3, UL1642, IEC62133, PSE and nail penetration, world's first for >400 Wh/kg cells

Packs & Modules

Leader in Li-Metal modules and packs covering mechanical, thermal and electrochemical capabilities. Largest data pool with extensive testing conditions for Li-Metal modules and packs

AI Powered BMS

Leading Li-Metal BMS. The first to integrate machine learning, AI and deep fundamental physical understanding for Li-Metal. Health monitoring and safety prediction tool can be used for both Li-Metal and Li-ion

Recycling

Leader in Li-Metal recycling with proprietary technologies for recycling cycled mossy lithium anode to fresh lithium compound to ensure long term sustainability

Hermes™

High Energy Rechargeable Metal Cells

Benefits

- World's lightest rechargeable battery
- High volumetric energy Density of 725 Wh/L
- The ultra-high gravimetric energy density of 400Wh/kg
- High Voltage
- Flexible, customizable design
- Recommended for weight constraint applications

Key Features

- Excellent capacity retention and long cycle life
- High pulse charge rate
- High continuous discharge rate
- Great high-altitude performance
- Practical operating temperature range
- High cycling efficiency

Main Applications

- High-altitude drones
- Commercial drones
- Electric autonomous flying transportation
- Consumer electronics
- Power tools
- Small UPS
- Transportation

Hermes™ Cell Life

SES developed advanced high-energy lithium-metal (Li-Metal) rechargeable battery technology, which delivers best-in-class energy density characteristics and cycling performance. This product is ideally suited for applications requiring very high gravimetric and volumetric energy densities that have battery-weight and dimension constraints, such as aeronautics and space, consumer electronics, EVs, and eVTOLs.

Electrical Characteristics

Nominal Voltage	3.82 V
Typical Capacity (C10, 25°C)	3.75 Ah
Nominal Energy	14.32 Wh

Mechanical Characteristics

Height	71.5 ± 1.0 mm
Width	48.5 ± 1.0 mm
Thickness	5.7± 0.3 mm
Typical Weight	36 g
Cell Volume	0.02 L

Operating Conditions

Charge Method	Constant Current / Constant Voltage
Charge Voltage	4.25V
Maximum Recommended Charge Current	0.75 A (0.2 C Rate)
Charge Temperature Range	0°C to 45°C
Charge Time at 25°C	Function of the Charge Current: C Rate → 1.5 – 2 Hr C/2 Rate → 2.5 – 3 Hr C/5 Rate → 6 – 7 Hr
Maximum Continuous Discharge Rate	11.2 A (3C Rate)
10Hz ACR, 0 (30%SOC, RT)	<35 mΩ
Pulse Discharge Rate	Up to 37.5 A (10C Rate)
Discharge Cut-off Voltage	3 V
Discharge Temperature Range	-10°C to 45°C

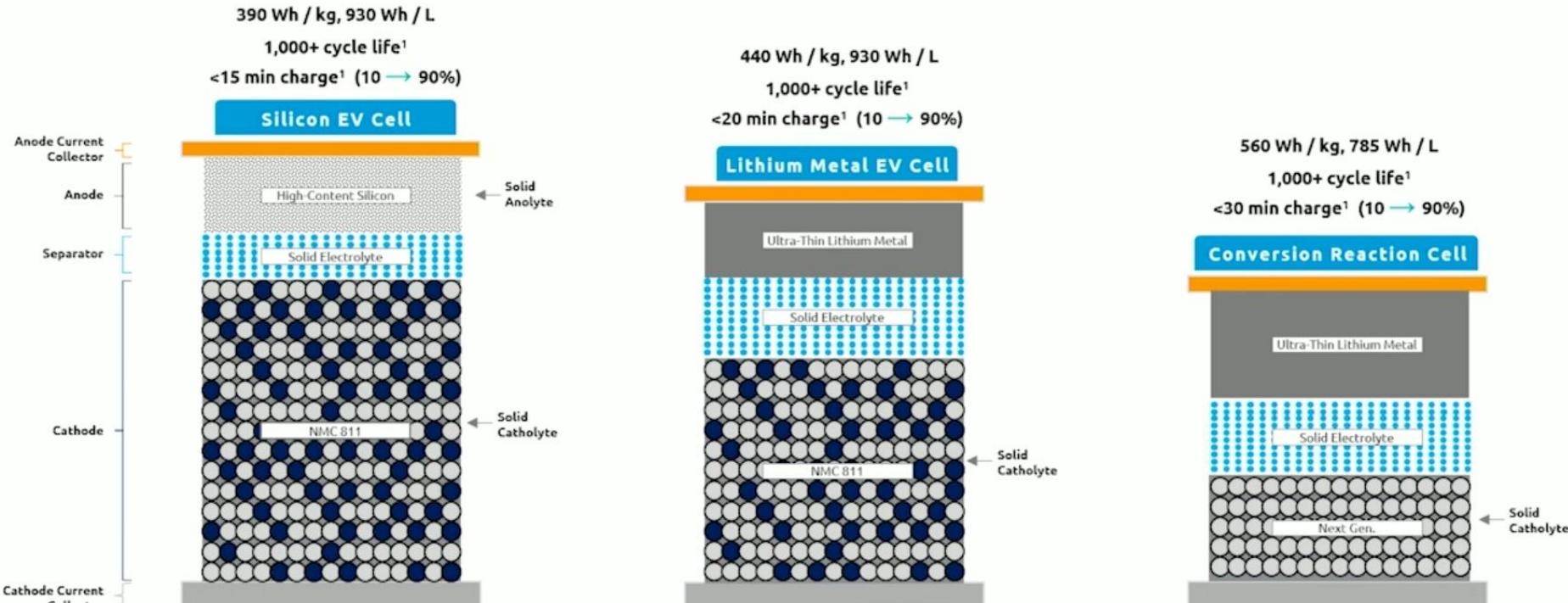
*Electric protection circuits within battery packs may limit the maximum charge/discharge current available. Contact SES.

SolidEnergy Systems

Beyond Li-ion™

Current Status vs. OEM 2025 Targets

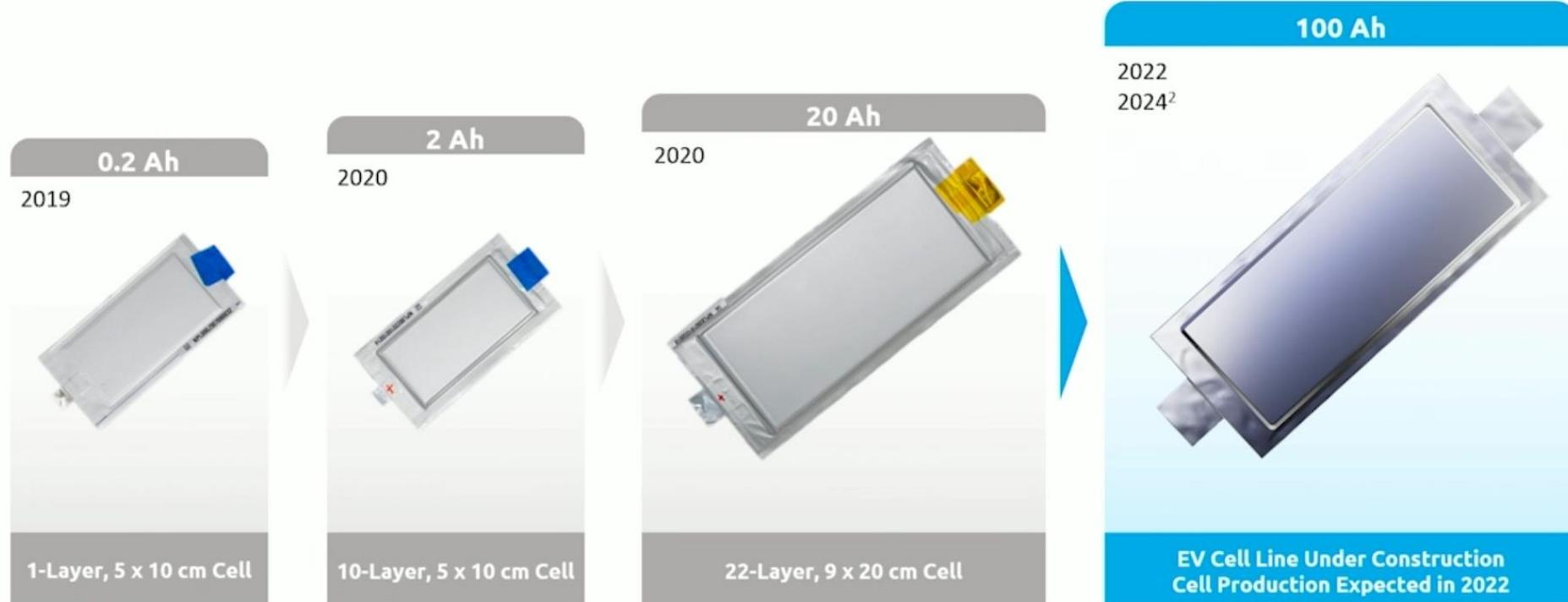
OEM 2025 Targets	SES Current Status
Energy Density: >>400 Wh/kg, >1000 Wh/L	✓ Already demonstrated 376 Wh/kg in 3.35 Ah prototype cells, and project >400 Wh/kg and >1000 Wh/L when scaled up to 100 Ah EV cells
Lifetime: 500 cycles until 80% capacity retention	✓ Already demonstrated Li-Metal chemistry can achieve 600 cycles until 80% capacity retention. 3.35 Ah prototype cell can achieve 500 cycles at C/10 charge and C/3 discharge at 23°C
Fast Charge: 15 min 0 → 80%	✓ Already demonstrated 12 min from 10% to 80% state of charge in 3.35 Ah prototype cells
Cobalt Amount: <7wt% or <11mol%	✓ All cathodes used in SES prototype and future EV cells have low Cobalt. SES is open to using OEM recommended cathode
Safety: Hazard Level <=4	✓ 3.35 Ah prototype cells passed external short circuit, thermal stability, overcharge, ARC, and nail penetration


Solid Power (Li Anode + Solid Electrolyte)

- Solid-state is a practical approach to improving energy density and safety in parallel
- Enabling Li metal is key to reliable long life, but cathode design is also key for maximizing performance
- Challenges remain in minimizing passive mass and volume, accommodating volume changes, and improving rate capability at low temperatures
- Opens up the design space with new materials and cell and battery concepts to ensure continued energy density gains for electric vehicle batteries

Solid Power Product Roadmap

Sustaining a product roadmap with continuous performance improvements across three unique chemistries



Multi-product roadmap specifically geared to satisfy Auto OEM objectives of early and sustained success

Note: Lithium metal anode portrayed in the fully-charged state. Solid Power cell performance metrics are initial commercialization design targets.¹ Solid Power estimates.

Real Results on the Path to Commercialization

Rapid performance and manufacturing achievements

Independently tested by Auto OEMs, top tier battery manufacturers and material suppliers¹

Note: Lithium Metal EV Cell pouches shown for 0.2 Ah, 2 Ah, and 20 Ah. Each cell layer refers to the number of double-sided cathodes. 1. Independent testing completed for 0.2 Ah and 2 Ah cells to date with 20 Ah independent testing pending. 2. Cell rendering shown for 100Ah cell. 100 Ah Silicon EV Cell anticipated in 2022. 100 Ah Lithium Metal EV Cell anticipated in 2024.

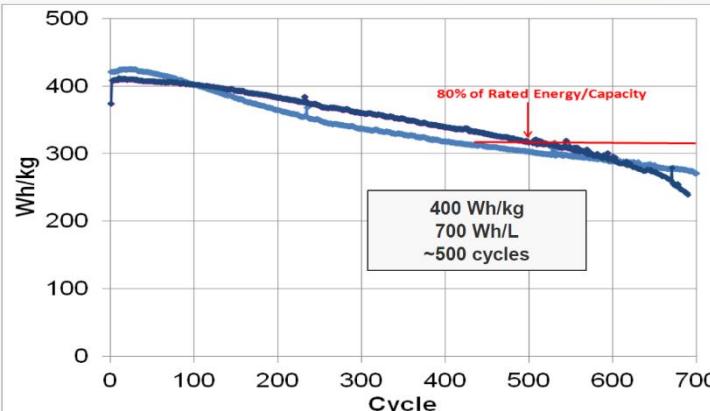
Nextech Li-S Cells

NexTech's product is market ready

- NexTech has two battery designs:
 - HE Cell: Optimized for High Energy
 - Stable, high-energy cathode
 - Wh/kg (400-500 Wh/kg) vs Li-ion (300 Wh/kg)
 - Cycle life competitive with current Li-ion
 - HP Cell: Optimized for High Power
 - Advanced cathode active materials that delivers higher power
 - ~6 C-rate capable
 - Higher cycle life
- Innovative and simplified manufacturing approach
 - Dramatic reduction in binder use vs. Li-ion
 - Semi-automated pilot plant with capacity of >10,000 cells/year

	NexTech HE Cell	NexTech HP Cell	Panasonic NCR21700
Composition	Li-S Pouch	Li-S Pouch	Li-Ion Can
# of Electrodes	21	21	jelly roll
Nominal Cell Voltage (V)	2.1	2.1	3.6
Max Cell Voltage (continuous) (V)	2.5	2.5	4.2
Max Cell Voltage (pulse) (30s) (V)	2.8	2.8	n/a
Min Cell Voltage (continuous) (V)	1.8	1.8	2.5
Min Cell Voltage (pulse) (30s) (V)	1.5	1.5	2.5
Max. Peak Discharge (10s) (C-rate)	3	6	1.9
Max. Peak Discharge (30s) (C-rate)	3	3	Fails
Max. Continuous Discharge (C-rate)	1	3	.3
Max. Charge Rate (C-rate) to 80% SoC	2	3	.7
Opt. Charge Rate (C-rate)	0.2	0.2	0.3
Cycle Life (Projected cycles @ 50% DoD)	1,000	1,500	1,000
Cycle Life (Projected cycles @ 80% DoD)	600	1,000	800
Cycle Life (Projected cycles @ 100% DoD)	300	600	300
Operating Temperature (°C)	-40 to +70	-40 to +70	0 to +50
Storage Temperature (°C)	-40 to +70	-40 to +70	-20 to +45
Specific Energy @0.1C (Wh/kg)	420	330	240

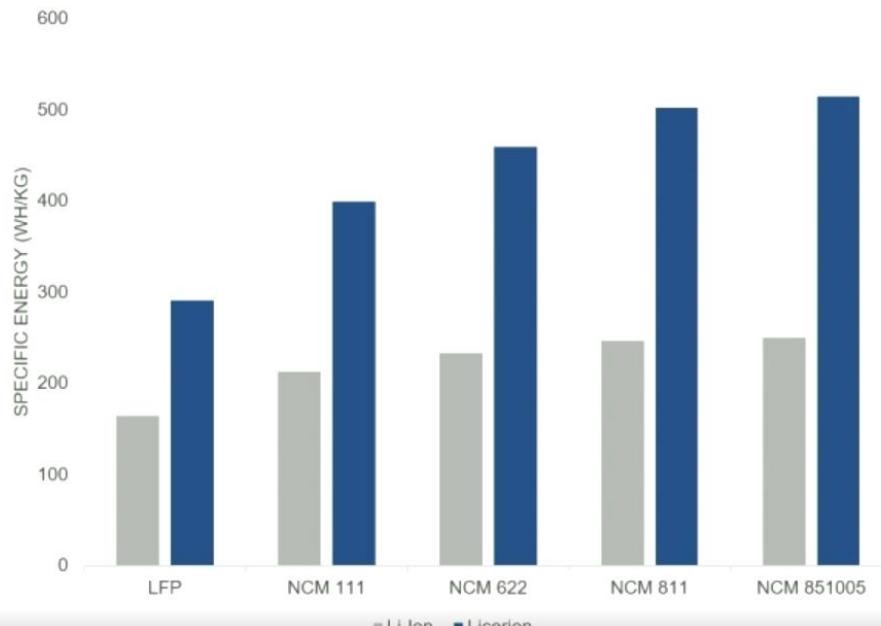
Sion Power (Li-Metal)


Licerion® Topics

LICERION®
by SION POWER®

- Sion Power's new *Licerion*® technology as a solution beyond Li-Ion and beyond Li-S.
 - Failure mechanisms of rechargeable batteries with metallic lithium anode.
 - Failure mechanisms addressed with *Licerion*® technology.
- Sion Power development of *Licerion*®-S and *Licerion*®-Ion batteries.
 - Li-S and *Licerion*®-S for Unmanned Aerial Vehicles (UAV).
 - *Licerion*®-Ion for diverse applications.

Licerion®-Ion Offers Highest Combination of Specific Energy and Longest Cycle Life


LICERION®
by SION POWER®

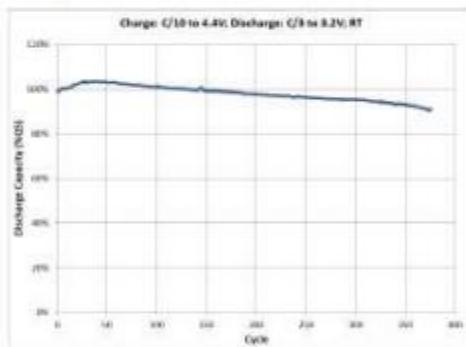
Specific Energy and Energy Density projected to 10x10x1cm large cell design using same active materials balance as laboratory 0.4 Ah cells and accounting for weight and volume of all large cell components.

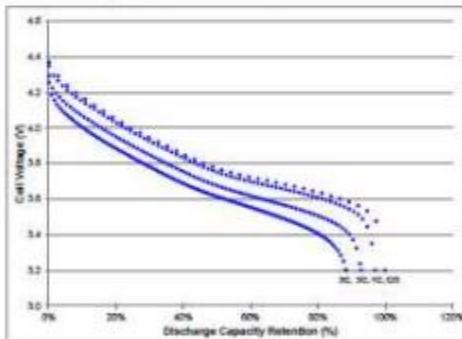
Licerion® Lithium Metal Anode Enables High Energy

Versatility to meet a wide range of applications

LFP = Lithium Ferro Phosphate, NCM = Nickel Cobalt Manganese

- Licerion Lithium Metal Anode Doubles the Energy of Today's Common Market Cathode Materials
- Licerion can be Paired with Any Known Cathode Material and Retain that Material's Desirable Character
 - Safety
 - Cycle Life
 - Power


Licerion® Projected to Exceed Future Automotive Battery Life Requirements


Licerion® Cell Technical Specifications

Electrical Specifications	20 Ah (No. CL-B200-20)	10 Ah (No. CL-B100-10)	6 Ah (No. CL-B60-6)
Nominal Voltage	3.8 V	3.8 V	3.8 V
Typical Capacity, C/3 20°C	19.8 Ah	10.2 Ah	5.4 Ah
Nominal Energy	76.2 Wh	39.2 Wh	20.8 Wh
Physical Characteristics	20 Ah	10 Ah	6 Ah
Length	100 mm	100 mm	100 mm
Width	100 mm	100 mm	100 mm
Thickness	10 mm	4.27 mm	3 mm
Cell Volume	100 mL	53 mL	30 mL
Weight per Cell	154 g	82 g	46 g
Operating Conditions	20 Ah	10 Ah	6 Ah
Charge Method	Constant Current, Constant Voltage	Constant Current, Constant Voltage	Constant Current, Constant Voltage
Charge Voltage	4.4 V	4.4 V	4.4 V
Max. Recommended Charge Current (Rate)	6.6 A (C/3 Rate)	3.4 A (C/3 Rate)	1.8 A (C/3 Rate)
Temperature Range	-20 to 45°C	-20 to 45°C	-20 to 45°C
Max. Continuous Discharge Current (Rate)	60 A (3C Rate)	30 A (3C Rate)	16 A (3C Rate)
Pulse Discharge Rate (5s)	Up to 100 A (5C Rate)	Up to 50 A (5C Rate)	Up to 27 A (5C Rate)
Discharge Cut-off Voltage	3.2 V	3.2 V	3.2 V

Cell Cycle Life Characteristics

Cell Discharge Rate Characteristics

Safety, Storage, and Handling

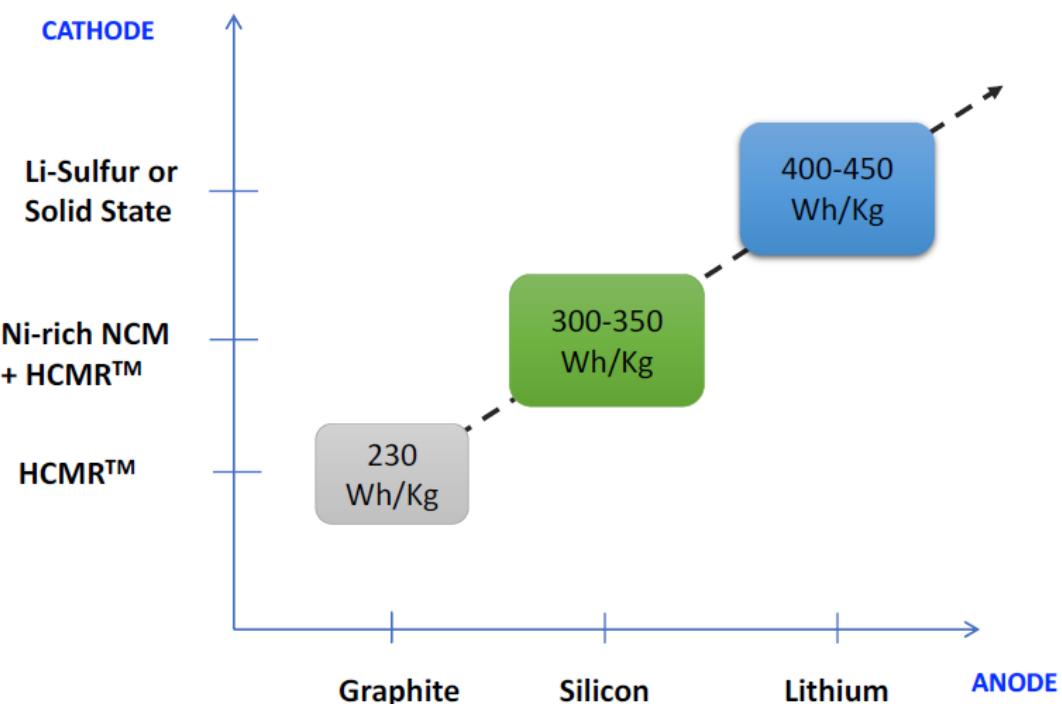
Licerion is a rechargeable, lithium metal battery cell containing a large amount of energy concentrated in a small volume. Appropriate precautions must be observed during handling and use of lithium based cells including:

- Do not disassemble or incinerate; dispose according to state and federal regulations
- Do not short terminals
- Store and use batteries in temperatures below 45°C and above -40°C
- Wear personal protective equipment (PPE) when handling lithium-based cells and batteries

The Licerion® Advantage

Licerion is a Total Energy System

Cells, modules, and battery management system working together

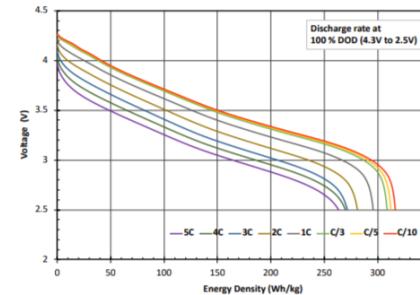
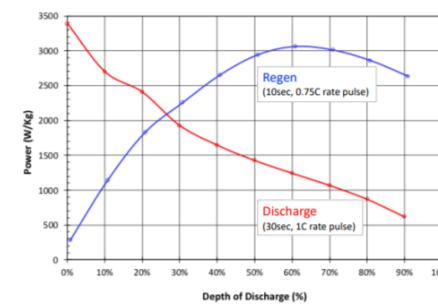
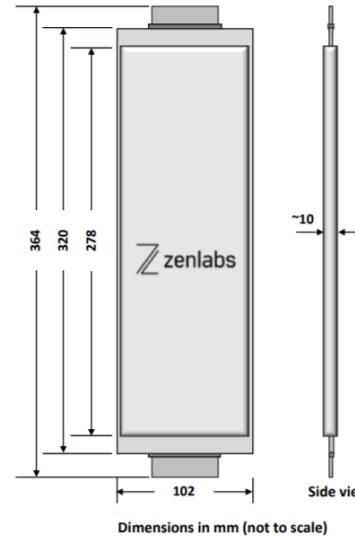
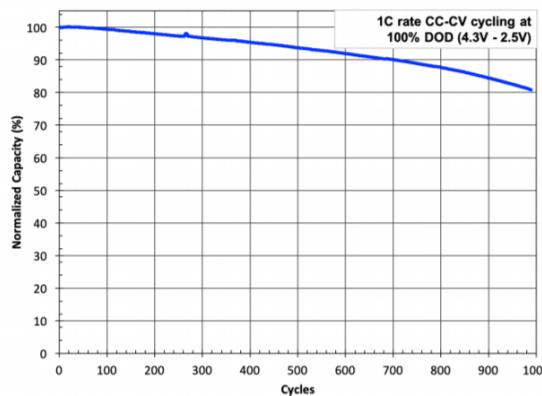

- ✓ **High Energy per Unit Mass**
Resulting lighter vehicle leading to greater range, faster acceleration, better handling, and reduced cost
- ✓ **Fast Charging**
Demonstrated fast-charge capability, no external heating required
- ✓ **Safety Focused**
Redundant chemical, physical, and mechanical protection to effectively eliminate lithium dendrites
- ✓ **High Power**
Cells are engineered to exceed standard automotive power requirements – independent of temperature
- ✓ **Long Cycle Life**
Exceeds auto industry requirement of 800 cycles
- ✓ **High Battery Capacity**
Demonstrated single cell capacity up to 20 Ah; no known limitations on even higher capacity
- ✓ **Versatility**
Can be paired with a variety of cathodes
- ✓ **Broad Temperature Range**
Charges and discharges well at low or high temperatures eliminating need for external heating

Zenlabs Energy (Former Envia)

Silicon anode development for high energy
long cycle life lithium ion cells

Cell Technology Roadmap

- 230 Wh/Kg was achieved in 1st USABC program using Lithium Rich Manganese rich Cathode (HCMR™)
- Development of >300 Wh/Kg batteries is ongoing in 2nd USABC program
- 350 Wh/kg – 300 cycles cells are being commercialized for drone applications





Key Features & Benefits:

- ✓ High usable energy to 100% SOC
- ✓ High capacity SiO_x anode paired with NCM cathode
- ✓ Exceptional power and high rate capability
- ✓ Low cost

Applications:

- ✓ Electric vehicles (EVs and PHEVs)
- ✓ Unmanned aerial vehicles (UAVs)

Cell Characteristics at 30°C		Units	Cell Level (BOL)
Cell Capacity @ C/3 Rate	Ah	51	
Useable Specific Energy @ C/3 Rate	Wh/kg	305	
Useable Energy Density @ C/3 Rate	Wh/L	640	
Peak Specific Discharge Power, 30 s Pulse	W/kg	850	
Peak Specific Regen Power, 10 s Pulse	W/kg	300	
Peak Discharge Power Density, 30 s Pulse	W/L	2000	
Cycle Life (100% DOD at 1C-1C rate)	Cycles	>1000	
Fast High Rate Charge	Minutes	>80% ΔSOC in 15 min	
Maximum Self-discharge	%/month	< 1	
Operating Temperature	°C	-30 to +52	
Average Voltage	V	3.46	
Cell Weight	g	592	
Cell Dimensions	mm	320 x 102 x 10	
Voltage Range	V	4.3 to 2.5	

Companies	Technology	Weight Energy Density [Wh/kg]	Volume Energy Density [Wh/l]	Cycle life	Nominal Voltage [V]	Charging Voltage [V]	Discharge Temp. Range [°C]	Charge Temp. Range [°C]	Production Scale Status
American Lithium Energy - (USA)	Li-Ion with 100% Silicon Nanowire Anode - LCO/NMC Cathode	300	700	200	3.4	4.2	from -30 to 60	from 0 to 45	Prototype
Amprius - (USA)	Li-Ion with 100% Silicon Nanowire Anode - LCO/NMC Cathode	450	1200	200-700	3.6	4.35	from -30 to 55	from -10 to 55	Commercial
Cuberg - (USA)	Lithium Metal Anode and high voltage cathode	405	800	200	3.8	4.35	from -20 to 60	from -10 to 50	Prototype
Eagle Picher - (USA)	Li-Ion with Silicon Graphite Anode	300	567	200	3.55	4.2	from -20 to 55	Not Mention	Prototype
Endlis Energy - (USA)	Lithium Metal Anode and Sulfur cathode	400							Prototype
Enevate - (USA)	Li-Ion with High Silicon Graphite Anode (70% silicon)	350	1000	1000	3.7	4.3	from -20 to 60	from 0 to 45	Prototype
Enovix - (USA)	Li-Ion with 100% Silicon Nanowire Anode - LCO/NMC Cathode	300	1000	500	3.8	4.35	from -20 to 60	from 0 to 45	Prototype
Eocell - (USA)	Li-Ion with Silicon Graphite Anode and solid state electrolyte	300	693	1000	3.6	4.2			Prototype
Factorial - (USA)	Lithium metal anode with solid electrolyte and NMC cathode	350-400	750-1000	1000		4.2			Prototype
High Power - (China)	Li-Ion with Silicon Graphite Anode and LCO high Voltage Cathode	300	750	500	3.85	4.5	from -20 to 60	from 0 to 45	Commercial
Leydenjar	Li-Ion with 100% Silicon Anode -NMC Cathode	450	1350	200		4.3			Prototype
Navitas Systems - (USA)	Lithium Metal Anode and Sulfur cathode	300		250	2.2	2.3			Prototype
Nextech Batteries - (USA)	Lithium Metal Anode and Sulfur cathode	410				2.41			Prototype

Shmuel De-Leon
Shmuel De-Leon Energy Ltd
www.sdle.co.il
shmuel@sdle.co.il

Information for presentation obtained by:

- 1. Public web sources.**
- 2. Shmuel De-Leon Battery/Energy Sources DataBase ® (Includes 29000 cell PDF data sheets) <http://www.sdle.co.il/Default.asp?sType=0&PageId=45580>**

This presentation has been compiled for the exclusive, internal use by our client. Within the framework of the engagement, Shmuel De-Leon Consultants will act solely in the interest of the client. Property rights in favor of third parties will not be constituted and no protective effect shall arise for the benefit of third parties.

The presentation shall be treated as confidential and may not be passed on and/or may not be made available to third parties without prior written consent from Shmuel De-Leon Energy.