
December/January 2018 technology and engineering teacher 25

fe
at

ur
e

ar
tic

le

Mobile applications intended to provide expo-
sure to the concepts of computer program-
ming and coding, referred to as coding apps,
are becoming increasingly recognized as

useful tools for classroom instruction (Hutchison, Nadolny,
& Estapa). For example, the ScratchJr app provides oppor-
tunities for users to create stories, games, and animations
through visual coding and, as a result, experience what it
is like to be a computer programmer. These programming
apps can be used to expose students not only to computer
programming or coding, but they also teach mathematics
concepts and the broader skills associated with computa-
tional thinking by asking students to engage in tasks that
require them to do things such as group variables, apply

conditional logic, develop algorithmic functions, calculate
angles within geometric shapes, and more. Computational
thinking is described as a problem-solving process and can
be defined as follows:

Formulating problems in a way that enables us to use
a computer and other tools to help solve them; logi-
cally organizing and analyz-
ing data; representing data
through abstractions such
as models and simulations;
automating solutions through
algorithmic thinking (a series
of ordered steps); identifying,
analyzing, and implement-

recommendations to support

computational thinking
Computational thinking is an important and necessary way of thinking for computer
programmers and other professionals in STEM.

by
Anne Estapa,
Amy Hutchison,
and
Larysa Nadolny

in the elementary classroom

	26 technology and engineering teacher December/January 2018

ing possible solutions with the goal of achieving the most
efficient and effective combinations of steps and resources;
and generalizing and transferring this problem-solving
process to a wide variety of problems (Society of Technology
in Education [ISTE] and the Computer Science Teachers As-
sociation. [CSTA]) (Israel, Pearson, Tapia, Wherfel, & Reese,
2015, p. 263).

Computational thinking is an important and necessary way of
thinking for computer programmers and other professionals
in science, technology, engineering, and mathematics (STEM).
Research on emerging practices around computational thinking
that is developed through coding initiatives in schools reports
that elementary children typically learn how to operate technolo-
gies rather than learn how to develop new technologies (Israel, et
al., 2015). As a result, students in elementary schools experience
only the receiving end of technology (Burke & Kafai, 2014). This
lack of production potentially limits the effectiveness of tech-
nology integration since early experiences with computational
thinking as a means of problem solving in abstract ways has the
potential to improve attitudes, engage students, and enhance
programing skills (Israel, et al., 2015). Thus, it is important to
provide students with early exposure to computational thinking.
Yet, with so many apps and so little guidance, it can be difficult
to know how to integrate these apps into classroom instruction.
Therefore, the purpose of this article is to provide recommenda-
tions for teachers, drawn from research, on how to select apps
and begin practices that support computational thinking.

Recommendation #1: Select Computationally Rich Coding
Apps
To ensure that an app is appropriate for all learners within the
classroom, the idea of “low ceiling, high ceiling” should be a
guiding principle. Grover and Pea (2013) explain that compu-
tational thinking tools (coding apps) for elementary students
should be easy for beginners to start an activity and create
programs or codes (low ceiling). However, the tool should also
be powerful and extensive enough to satisfy the attention and
learning of more experienced or advanced programmers (high
ceiling). Apps with this principle in mind often follow a use-

modify-create progression to allow a learner to experience each
stage to support learning and engagement. Therefore, in review-
ing apps for implementation within the classroom, the authors
recommend that teachers select apps that allow students to
increase their engagement and production with the app as their
skill increases.

Grover and Pea (2013) highlight the following apps as examples
that allow early experiences to focus on designing and creating:
Scratch, Alice, Kodu, and Greenfoot. Many of the apps provided
use a visual programming language, which allows programmers
to snap visual programming codes together to control actors
on the screen. This format supports computational thinking
and provides students with the opportunity to create their own
digital media products. Yet, it is simple enough that beginning
users can be successful with the apps. The authors highlight
this process in Figure 1, with an example from ScratchJr. In this
example, the student selects a series of commands and places
them in a logical sequence to make the animals move around
the barn. Further, this app allows for the addition of a recorded
speech response (represented by the microphone) that plays as
the movement on the screen occurs. This example shows how
simple it is to navigate a coding app such as ScratchJr and ap-
ply computational thinking skills (low ceiling). Yet, the app also
provides opportunities for students to develop and apply more
complex computational thinking by creating original characters,
developing and connecting multiple scenes, changing colors and
words, etc. (high ceiling).

Recommendation #2: Become a Learner
For teachers to effectively integrate coding apps into math-
ematics instruction it may be helpful to first engage with these
apps as a learner. Some teachers may believe that coding is too
difficult to learn or too far outside the realm of their expertise.
However, coding apps and many coding initiatives are designed
for beginners and require no previous coding experience. Many
apps are designed with a game-like format or simple tutorials
that teach the user what he or she needs to know to engage in
the activities presented within the app. By engaging with coding
apps as a learner, teachers can gain experience with the apps
while also determining the specific concepts that can be taught
through the app.

There are many popular apps and websites with which us-
ers can try to gain a better understanding of the function and
purposes of coding apps. The authors recommend that teachers
get started with Scratch or ScratchJr, depending on their own
skill level and the grade level they teach. Scratch and ScratchJr
(scratch.mit.edu) are both free and allow users to create anima-
tions, art, games, stories, or more. Scratch is targeted at ages
8-16 and allows users to program their own content, but also
has an online community in which teachers can engage to get
resources and ideas for integrating Scratch into their classrooms.

Figure 1. Example of snap coding from ScratchJr.

...computational thinking in the elementary classroom

https://scratch.mit.edu

December/January 2018 technology and engineering teacher 27

...computational thinking in the elementary classroom

ScratchJr is targeted at younger students, ages 5-7, and is a great
tool for those who are inexperienced with coding apps. Both
apps teach computational thinking, as they require students to
apply conditional logic and solve problems to get the outcome
they want—creation of a game, image, animation, etc. Similarly,
many coding apps require the application of mathematics skills
such as group variables, applying conditional logic, developing
algorithmic functions, and calculating angles within geometric
shapes. Teachers can consider how these skills can be taught
through the apps as they explore them for themselves.

Recommendation #3: Use Apps for Active Learning
Student content creation within a coding app can meet the
needs of learners in several ways. The 2016 National Education
Technology Plan (U.S. Department of Education, 2016) asks all
educators to consider equity in the use of classroom technology,
particularly considering differences in passive or active learning
through technology. Differences in the way technology is used in
the classroom for either more active creation with digital content
and tools or more passive consumption of information from digi-
tal devices has been termed the “digital use divide” (U.S. Depart-
ment of Education, 2016). By engaging all students in the active,
creative use of coding apps, the teacher is helping to bridge the
digital use divide. In addition to classroom activities, the authors
recommend providing students, parents, and/or guardians with
additional online resources to encourage engagement with
groups underrepresented in the STEM fields. For example, Black
Girls Code (www.blackgirlscode.com/) was created by Kimberly
Bryant in partnership with major corporations in the fields of
technology and finance. Students can attend workshops, join
afterschool communities, and participate in hackathons across
the nation. Girls who Code (https://girlswhocode.com/) hosts

summer camps and afterschool clubs. If online resources do
not meet the needs of students, teachers can consider starting
a coding club using the free resources at Code Academy (www.
codecademy.com/schools/curriculum/resources) or the ready-
made lesson plans for afterschool clubs using the Tynker app
(see Figure 2).

Recommendation #4: Bridge Learning Across the Disciplines
Recently, several researchers have illustrated how concepts of

computational thinking can be aligned with other content
areas to provide authentic learning experiences (e.g.,
Jona, et al., 2014; Sengupta, et al., 2013; Weintrop, et al.,
2014). Advocates of computational thinking contend
that computational thinking is at the core of all STEM
disciplines (Henderson, Cortina, Hazzan, & Wing, 2007)
and has the potential to bridge learning within and across
discipline areas. Importantly, coding apps can be used to
help students begin thinking like scientists, mathemati-
cians, or engineers. For example, coding apps can be
used to develop what Lucas and Hanson (2014) refer to
as Engineering Habits of Mind (EHOM), which include: (1)
systems thinking, (2) adapting, (3) problem-finding,
(4) creative problem solving, (5) visualizing, and (6) im-
proving. For instance, as part of a science lesson, teach-
ers could ask students to create an animated demonstra-
tion of the life cycle of a butterfly using a coding app or
explore the topic of adaptations (Figure 3). As part of that
process, teachers could also teach and integrate engi-
neering habits of mind such as creative problem-solving

Figure 2. Sample lesson activities from Tynker.com.

Example of a coding app.

http://www.blackgirlscode.com/
https://girlswhocode.com/
https://www.codecademy.com/schools/curriculum/resources
https://www.codecademy.com/schools/curriculum/resources

	28 technology and engineering teacher December/January 2018

...computational thinking in the elementary classroom

(Hutchison, Nadolny, & Estapa, 2016). Through the use of coding
apps students can learn coding skills ranging from basic to com-
plex, can learn how to devise and communicate effective mes-
sages through a combination of images, text, and color. Further,
students will gain experience that will support their development
towards proficiency with the International Society for Technol-
ogy in Education's ISTE Standards for Students (2016), such as
becoming computational thinkers and creative communicators.

To maximize learning when implementing coding apps into
the classroom, teachers should begin by connecting the math-
ematical content learning within the app to one other discipline,
building connections one content area at time. This will ensure
that efforts are purposeful and that students will be shown the
connection among the STEM disciplines. For example, when
working on an app focused on computational thinking goals,
through problem solving and representing data using graphs
and/or tables (Mathematics) students could also engage in con-
versations around patterns in coding (Technology), create stories
to provide context for what is happening on the screen (Literacy),
or recreate a code using classroom materials to design and re-
design paths given specific criteria (Engineering). In this way, the
learning experience connects student understanding within and
across STEM disciplines as recommended within Next Genera-
tion Science Standards (NGSS). In Table 1, the authors highlight
how a computational thinking coding experience might align
with NGSS (NGSS Lead States, 2013).

Through the integration process, the lesson or activity imple-
mented supports student learning within and across STEM
content areas.

Conclusion
The authors support claims that early access to and experiences
with computational thinking will strengthen elementary students’
computational thinking abilities while enhancing their under-
standing of mathematics and the connection of mathematics to
other disciplines. In defining computational thinking as a way for

Figure 3. Buterfly Coding Challenge

Butterfly Coding Challenge
National Science Education Standards: K-4 The Characteris-
tics of Organisms: Each plant or animal has different struc-
tures that serve different functions in growth, survival, and
reproduction.

Now that you are familiar with how some butterflies use cam-
ouflage or a disguise to hide themselves from predators, it is
time to help your own butterflies survive!
1.	 Choose two butterflies from a botanical garden website,

such as http://rgbutterflyapp.com/ or
www.missouribotanicalgarden.org/

2.	 Download images of your selected butterflies to your
iPad.

3.	 Follow the same steps above to find and download a
picture of a predator of butterflies.

4.	 Create a background in your coding app that will help
hide those butterflies.

5.	 Using the sequence and looping tools in your coding app
(control and motion in Scratch), move the butterflies and
the predator, showing how a butterfly can survive by us-
ing its adaptations.

Extension
Turn your story into a survival game! Use controls and
variables to allow the player to earn points when the preda-
tor touches the butterfly. For example, when the space bar is
clicked, the wasp will move four steps in a random direction
until it touches the butterfly.

(EHOM 4) by having students generate coding and design solu-
tions together and then by adapting (EHOM 2) their code and
design to improve (EHOM 6) their demonstration.

Further, engaging with coding apps can also help students de-
velop digital literacy skills and exposure to disciplinary vocabu-
lary by introducing them to specialized language and opportu-
nites to create and produce new information in digital contexts

Table 1. NGSS K-2 Engineering Design Standards

Performance Expectation Ask questions, make observations, and gather information about a situation people want to
change to define a simple problem that can be solved through the development of a new or
improved object or tool.

Science and Engineering Practices Ask questions based on observations to find more information about the natural and/or
designed world(s). (K-2-ETS1-1)

Disciplinary Core Idea A situation that people want to change or create can be approached as a problem to be
solved through engineering. (K-2-ETS1-1)

Before beginning to design a solution, it is important to clearly understand the problem.
(K-2-ETS1-1)

http://rgbutterflyapp.com/
http://www.missouribotanicalgarden.org/

December/January 2018 technology and engineering teacher 29

students to not only use computers to solve problems but also
as a means to create and represent model solution strategies,
student learning reaches beyond programming. As teachers
explore options and purposefully integrate apps into their class-
room following the recommendations in this article, students will
be provided with the opportunities and tools they need to learn.
The interest generated from such experiences has the potential
to prime students for success within the classroom and in future
computational-thinking-based opportunities.

References
Burke, Q. & Kafai, Y. B. (2014). Decade of game making for learn-

ing: From tools to communities. Handbook of Digital Games,
pp. 689-709.

Code.org. (2014). 2014 annual report. Retrieved from http://code.
org/about/2014

Grover, S. & Pea, R. (2013). Computational thinking in K–12: A
review of the state of the field. Educational Researcher, 42(1),
38-43.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007, March). Com-
putational thinking. In ACM SIGCSE Bulletin, 39(1), 195-196.

Hutchison, A., Nadolny, L., & Estapa, A. (2015). Using coding apps
to support literacy instruction and develop coding literacy.
The Reading Teacher, 1-11.

International Society for Technology in Education. (2016). ISTE
standards for students. Retrieved from www.iste.org/stan-
dards/standards/for-students-2016

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G.
(2015). Supporting all learners in school-wide computational
thinking: A cross-case qualitative analysis. Computers &
Education, 82, 263-279.

Jona, K., Wilensky, U., Trouille, L., Horn, M., Orton, K., Weintrop, D.,
et al. (2014). Embedding computational thinking in science,
technology, engineering, and math (CT-STEM). Presented at
the Future Directions in Computer Science Education Sum-
mit Meeting, Orlando, FL.

Lee, Y. J. (2011). Empowering teachers to create educational
software: A constructivist approach utilizing Etoys, pair pro-
gramming and cognitive apprenticeship. Computers &

	 Education, 56(2), 527e538. Retrieved from http://dx.doi.
org/10.1016/j.compedu.2010.09.018

Lucas, B. & Hanson, J. (2014). Thinking like an engineer: Us-
ing engineering habits of mind and signature pedagogies
to redesign engineering education. International Journal of
Engineering Pedagogy, 6(2), 4-13.

Lye, S. Y. & Koh, J. H. L. (2014). Review on teaching and learning
of computational thinking through programming: What is
next for K-12?. Computers in Human Behavior, 41, 51-	
61.

NGSS Lead States. (2013). Next generation science standards:
For states, by states. Washington, DC: National Academies
Press. 

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D.
(2013). Integrating computational thinking with K-12 science
education using agent-based computation: A theoretical
framework. Education and Information Technologies, 18,
351e380. Retrieved from http://dx.doi.org/10.1007/s10639-
012-9240-

U.S. Department of Education, Office of Educational Technology.
(2016). Future ready learning: Reimagining the role of technol-
ogy in education. Washington, DC. Retrieved from http://
tech.ed.gov/files/2015/12/NETP16.pdf

Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Jona, K., Trouille,
L., et al. (2014). Defining computational thinking for science,
technology, engineering, and math. Poster presented at the
Annual Meeting of the American Educational Research As-
sociation (AERA 2014), Philadelphia, PA.

Wing, J. (2006). Computational thinking. Communications of the
ACM, 49(3), 33-36.

Anne Estapa is an assistant professor in the
School of Education at Iowa State University.
Her research focuses on the facilitation of
teacher noticing and learning through teaching
practices, technologies, and professional devel-
opment opportunities. She can be reached at
aestapa@iastate.edu.

Amy Hutchison is an associate professor at
George Mason University. Through her scholar-
ship she examines how digital technology can
be used equitably to support diverse learn-
ers and ways of supporting the development
of STEM literacy among underrepresented
students.

Larysa Nadolny is an assistant professor in
the School of Education at Iowa State Univer-
sity. Her research interests include examining
factors in student motivation and achievement
within digital environments.

This is a refereed article.

Ad Index
California University of Pennsylvania .. 44

North Carolina State University ...3

STEMPILOT, Inc. ..3

...computational thinking in the elementary classroom

http://code.org/about/2014
http://code.org/about/2014
https://www.iste.org/standards/standards/for-students-2016
https://www.iste.org/standards/standards/for-students-2016
http://dx.doi.org/10.1016/j.compedu.2010.09.018
http://dx.doi.org/10.1016/j.compedu.2010.09.018
http://dx.doi.org/10.1007/s10639-012-9240-
http://dx.doi.org/10.1007/s10639-012-9240-
http://tech.ed.gov/files/2015/12/NETP16.pdf
http://tech.ed.gov/files/2015/12/NETP16.pdf
mailto:aestapa%40iastate.edu?subject=

