
 8 technology and engineering teacher December/January 2018

fe
at

ur
e

ar
tic

le

by
Michael
Hacker,
DTE

into technology and engineering education

Introduction
Computational Thinking (CT) is being promoted as “a fun-
damental skill used by everyone in the world by the middle
of the 21st Century” (Wing, 2006). CT has been effectively
integrated into history, ELA, mathematics, art, and science
courses (Settle, et al., 2012). However, there has been no
analogous effort to integrate CT into Technology and Engi-
neering (T&E) education despite the vast opportunities it
provides for engaging learners in CT practices in the context
of authentic technological challenges.

Interest in computational thinking is not new. In the 1950s,
it was referred to as “algorithmic thinking” (Denning, 2009).
It can also be traced to Papert’s interest in children working
with computers to develop procedural thinking skills (Pap-
ert, 1980). A U.S. workforce well versed in CT was advocated
by a presidential advisory committee over a decade ago
(PITAC 2005).

Many definitions of CT have been proposed (NAS, 2010).
The International Society for Technology in Education and
the Computer Science Teachers Association (CSTA) have
operationally defined computational thinking as:

A problem-solving process that includes: formulating
problems to enable us to use a computer to solve them;
logically organizing and analyzing data; representing
data through abstractions such as models and simula-
tions; automating solutions through algorithmic think-
ing; identifying, analyzing, and implementing solutions
to achieve the most efficient and effective combination
of steps and resources; and generalizing this problem-
solving process to a wide variety of
problems (Barr, Harrison, & Conery, 2011,
p. 21).

CSTA suggests that students should apply CT
strategies and tools in virtual and real-world

integrating
computational thinking

There are several compelling reasons why CT should be integrated into T&E programs.

December/January 2018 technology and engineering teacher 9

integrating computational thinking into T&E education

contexts to be better able to conceptualize, analyze, and solve
complex problems (CSTA, 2011). Weintrop et al. (2016) remind us
that:

From a pedagogical perspective, providing meaningful con-
texts within which CT can be applied differs markedly from
teaching CT as part of a stand-alone course in which the as-
signments students are given tend to be divorced from real-
world problems. The sense of authenticity and real-world
applicability is important to motivate diverse and meaningful
participation in computational activities (p. 128).

Internationally, efforts to include CS in K-12 education are being
made in Australia, China, Israel, Singapore, and South Korea
(Wing, 2016). The UK Department for Education has provided
statuory guidance for CS in the national curriculum. The purpose
is to “implement high-quality computing education that equips
pupils to use computational thinking and creativity to under-
stand and change the world” (Gov.UK, 2013, p. 1). The curriculum
focuses on helping 5- to 16-year-olds:
• Understand and apply the fundamental principles and

concepts of computer science, including abstraction, logic,
algorithms, and data representation.

• Analyze problems in computational terms and have repeated
practical experience writing computer programs in order to
solve such problems.

• Evaluate and apply information technology, including new or
unfamiliar technologies, analytically to solve problems.

• Act as responsible, competent, confident, and creative users
of information and communication technology.

In the U.S., teachers with varied backgrounds teach CS at the
K-12 level, and many states do not require computer science cer-
tification (Teaching-Certification.com, 2011-2016). Guzdial (2012)
has written that, “in most states, CS is classified in the business
department, as a vocational education subject.” Love and Strimel
(2016) identified relationships between ITEEA’s Standards for
Technological Literacy (STL) and the K-12 CS Framework. Love-
land (2012) discussed how teaching G&M code aligns with STL
and the NCTM standards. Next Generation Science Standards
lists “using mathematics and computational thinking” as one of
eight "Science and Engineering Practices" (NGSS Lead States,
2013). However, no school discipline has yet to take on CT as a
central focus. Since the school day is a zero-sum game, adding
stand-alone new courses is a challenge. Integrating CS/CT into
existing coursework might be considered more feasible. T&E can
take the lead in addressing what is a growing need.

Rationale for Integrating CT into T&E
Programs
There are compelling reasons why CT should be integrated
into T&E programs. These relate to aligning T&E curriculum

and instruction with societal and workforce needs; broaden-
ing participation in CT; the feasibility of implementation within
T&E programs; and staunching the decline of T&E teachers. The
need is real—T&E can help to fill that need, but transformational
changes in professional mission, curriculum, and professional
preparation are required.

Aligning T&E Curriculum and Instruction
with Societal and Workforce Needs
The public strongly supports the need for students to assimilate
digital literacy. Silicon Valley executives are funding school-
based CS programs (Singer, 2017), but since schools are not
moving quickly enough into this space, coding bootcamps are
proliferating to bridge the gap. T&E can play a role in helping stu-
dents learn to become computational thinkers and thus become
more highly regarded as part of the educational mainstream. This
can be done without compromising the discipline’s core mission
of teaching students about the human-made world by integrat-
ing CS & CT principles, practices, and vocabulary with core T&E
concepts―design, systems thinking, modeling, resources, and
human values (Rossouw, Hacker, & de Vries, 2011).

Broadening Participation in CT
Integrating CT within project-based T&E contexts has the
potential to significantly broaden participation for a large cohort
of students (and their teachers) who might not be specifically
interested in taking stand-alone CS courses but are interested in
designing solutions to technological and engineering problems.
Object-oriented programming environments like Scratch and
Snap! have been used successfully to engage students (including
those from underrepresented groups) in CS (Maloney, Peppler,
Kafai, Resnick, & Rusk, 2008).

Informed Design Pedagogy

The instructional model for integrating CT into T&E draws
upon the informed design pedagogy that has been devel-
oped and validated through several large-scale NSF-funded
projects (Hofstra, 2004, 2008). Using informed design
(Burghardt & Hacker, 2004) students complete a series of
just-in-time tasks called knowledge and skill builders (KSBs)
that build their knowledge and skill base before they begin
designing.

These pre-design KSBs help students gain the CS and CT
competence needed to approach designing from a more
informed perspective (rather than merely through trial-and-
error). The subsequent design challenges call upon students
to apply their new knowledge and skills to the modeling of
prototypical solutions.

 10 technology and engineering teacher December/January 2018

With the active advocacy of ITEEA, the 30,000 T&E teachers in
the U.S. (Barbato, 2017) can serve as a significant new profes-
sional constituency that can support students to learn CS and CT
skills.

Feasibility of Implementation
In a survey conducted by Hofstra University and ITEEA in De-
cember 2016, data was collected from a sample of T&E educa-
tors (n=202) about their interest in adding a CS/CT component
to their programs. On a seven-point Likert scale, T&E teachers
were highly supportive of adding a CS/CT component to their
curriculum (median = 6.3); 76% of HS teachers responding
would devote 18 or more weeks to such a program; and notably,
61% would attend a multi-week intensive summer PD program to
learn how to teach CS/CT principles.

Design pedagogy is at the core of T&E instruction. Students
frame the challenge, clarify criteria and constraints, engage in
related research, iteratively generate ideas, make tradeoffs in
choosing optimal solutions, develop and test prototypes, itera-
tively improve designs, and reflect upon and share their thinking
with others.

Design thinking is also at the heart of CS and CT in that prob-
lems are framed; research is synthesized and informs the design
process; problems are addressed through logical and systematic
approaches; prototypes are tested for usability with target us-
ers; and designs are validated and iteratively improved through
feedback.

Facilitating understanding of CS and CT requires conceptual
understanding over and above coding skills. Preparing stu-
dents to become computational thinkers requires a focus on the
“big ideas” of computing: creativity, abstraction, programming,
algorithms, data/information, the internet, and global impacts of
computing (Snyder, Astrachan, Briggs, & Cuny, 2010).

T&E educators have a great deal of autonomy in making curricu-
lar choices, as they are normally not constrained by high-stakes
testing. It is feasible to teach CT and computer science skills by
incorporating real-world computing problems into T&E design
challenges.

Stanching the Decline of T&E Teachers
The number of universities granting T&E undergraduate degrees
in the U.S. has plummeted from 81 in 1988 (Moye, 2017) to 29 in
2016 (Rogers, 2017) (a 64% decrease); and the number of T&E
BS/BA degrees awarded in the U.S. has fallen from 815 in 1995-
96 to 206 in 2015-16 (Moye, 2017), a startling drop of 75%. T&E
faces an existential challenge. Addressing CT not only will align
curriculum and instruction with societal and workforce needs,
but has the potential to expand the breadth of our teaching
cohort, an issue critical to the survival of T&E education. Young
people interested in CS, programming, and data science could
serve as a new T&E teaching constituency. This new cohort
could add immeasurably to the origination of design problems
based on actionable insights from data and the subsequent data-
driven analysis and optimization of solutions.

Curriculum and Professional Development
As with the introduction of any new educational program, exem-
plary curriculum must be provided (with guidance for students
and teachers), and associated professional development (PD)
should be offered.

Newly Developed or Adapted Curriculum
New curricula can be developed, but to do so requires funding
and time for materials development, classroom testing, evalua-
tion, and revision. Alternatively, existing exemplary curricula can
be adapted for use in T&E programs.

An example. The NSF-funded Beauty and Joy of Computing
(BJC), an introductory CS curriculum developed at UC Berkeley,
is recognized for its appeal to a wide range of students. It uses
an easy-to-learn, object-oriented language to teach key CS and
CT principles (MSPnet, 2016). BJC has been extensively tested by
students and teachers, including many in high-minority districts
(Price, Albert, Catete, & Barnes, 2015). T&E curricular adapta-
tions would apply BJC CS and CT concepts and skills to the
solution of design problems in contexts that resonate well with
the T&E community.

integrating computational thinking into T&E education

Figure 1. Supplies for use in physical-world contexts (e.g., robotics and
computer control).

December/January 2018 technology and engineering teacher 11

integrating computational thinking into T&E education

A sound pedagogical approach would guide stu-
dents to revisit the same CS and CT concepts in both
physical-world contexts (e.g., robotics and computer
control) and virtual-world contexts (e.g., game design).
Since most students are familiar with robotics through
toys, movies, and industry-based robotic systems and
have played electronic games, these contexts are par-
ticularly promising for connecting student experiences
to computing, technology, and engineering. Curricular
development and/or adaptation will most likely require
collaboration between T&E and CS educators. Com-
putational thinking can be taught using systems with
which T&E teachers are comfortable and familiar, like
robotics and game design. See Figures 1 and 2.

The curriculum model shown in Table 1 (page 12) is
an illustrative example of how a one-semester course
might be implemented to integrate CS and CT con-
cepts and skills within T&E contexts. In this model BJC is used as
an example of a curriculum to be adapted.

This approach is not intended to teach students to become pro-
grammers in languages like Python or JavaScript (this can come
later); rather, it serves as an introduction to computer science
principles where students will use a block-based, drag-and-drop
programming language (Snap!, based on Scratch) to learn and
apply key CS and CT ideas.

Professional Development
Inservice T&E teachers will need to learn how to integrate
CT into their practice. Thus, development and conduct of PD
programs to support implementation is essential. As noted
earlier, when surveyed, T&E teachers expressed eagerness to
attend intensive PD programs focused on CS and CT. Preservice
teacher educators can advocate for programmatic reform, but
that will require courage in confronting the realization that, in
some cases, our own backgrounds may be insufficient to provide
the instruction necessary. Engaging colleagues who have CS
expertise could lead to mutually beneficial collaborations.

Research-Based Professional
Development
In planning PD programs generally (and especially in areas of en-
deavor outside teachers’ comfort zones), PD initiatives informed
by research will have the highest likelihood of success. Ac-
cording to Darling-Hammond and McLaughlin (1995), teachers
need a rationale for adopting new curricula. Traditional notions
of inservice education need to be replaced by opportunities for
“knowledge sharing.” Teachers need to learn collaboratively, dis-
cuss what they know and want to learn, and engage in planning
and evaluating (Darling-Hammond & McLaughlin, 1995). Loucks-

Horsley and colleagues (2010) further suggest that programs be
linked to school-wide efforts, that teachers help each other and
choose their own goals and activities, that ongoing support be
provided, and that the focus be on practices that result in im-
proved student learning (Loucks-Horsley, Stiles, Mundry, Love, &
Hewson, 2010). The PD plan shown in Table 2 (page 13) illustrates
a sample agenda for the design of a two-week PD workshop
based on the curriculum model shown in Table 1. The PD plan
introduces teachers to the major CS and CT concepts and skills
within T&E robotics and game design contexts.

Potential Research Opportunities
Integrating CS and CT into T&E programs offers a rich environ-
ment for scholarly research. Possible research questions might
include:

RQ1. How should T&E courses be designed to help students
learn core CS and CT ideas and capabilities?

RQ2. How can we help T&E educators become competent and
comfortable with enacting CS and CT-related projects in their
T&E courses and facilitating learning of CS and CT content and
capabilities?

RQ3. In the context of T&E education that integrates CT, what
does it take to get students to value CT knowledge and capabili-
ties, have interest in continuing to engage in CT, and see them-
selves as people who engage in CS and CT?

A comparative case study approach might be used to answer
these research questions. This methodology would compare and
contrast data relative to teacher engagement and student learn-
ing in order to extract generalizable lessons learned. Data would
help us understand how teachers gain confidence, competence,

Figure 2. Gaming professional development workshop.

 12 technology and engineering teacher December/January 2018

Table 1. Robotics and Game Design Adaptations Using Existing BJC Curriculum as an Example:
Sample KSBs and Design Challenges Within a One-Semester Technology and Engineering Course
This particular example of a T&E curricular adaptation uses informed design methodology (page 9) as the pedagogical backbone.

BJC CS and CT
Concepts and Skills

Robotics/Computer Control Game Design Context

Building a simple app. Draw,
move, and turn sprites.

KSBs: Create a new program to turn LEDs on and off.
Challenge: Design and program a traffic control system
for an emergency medical services (EMS) station on a
busy highway.

KSBs: Controlling sprites; keyboard input, mouse input.
Challenge: Program keyboard controls to move a small
animal to safety.

Building Your Own Blocks
(BYOB); using loops.

KSBs: Create custom blocks that use a loop to gradually
fade an LED and to change colors of a tri-color LED; move
servos and motors; use loops to blink lights and move
servos between two positions; use nested loops to create
complex combinations of lights and motion.
Challenge: Continue EMS station work.

KSBs: Sprite cloning as object creation; create blocks
to draw simple shapes; use loops to make complex
patterns.
Challenge: Control a white blood cell that eats replicat-
ing bacteria cells, thus protecting the human body from
infectious bacteria.

Building grids for games;
students use mathematics
expressions to draw grids.

Game design only KSBs: Use list and matrix design to simulate probable
spread of a forest fire. Challenge: Create a forest fire
and hero to locate and put out the fire.

Conditional blocks; if-else
and if statements and
predicates (such as < or
=) to control a program’s
behavior.

KSBs: Write conditionals to control a robot using sensors;
use sensor inputs to control the output of motors.
Challenge: Design and program a vehicle to move a
sample away from a dangerous biological environment.

KSBs: Artificial Intelligence (AI) in games. Watson
(IBM’s supercomputer) plays Tic-Tac-Toe.
Challenge: Explore programming routines for Watson
so it never loses a Tic-Tac-Toe game to a human player.

Script variables; tools and
techniques; Boolean op-
erators (and/or/not). Using
local variables to control
systems.

KSBs: Create a block to find and return the threshold for
a sensor; use sensors in compound Boolean statements.
Challenge: Design a physical whack-a-mole game that
has a mole appearing randomly using servos and sensors.

KSBs: Script variables, using programming tools.
Challenge: Create an on-screen version of the whack-a-
mole game that has a mole appearing randomly.

Using abstraction to write
clear, debuggable programs.

KSBs: Abstraction, reducing complexity, increasing ef-
ficiency. Challenge: Sensor-controlled design project (e.g.,
a vehicle that follows a white-line guide track to enter a
radioactive environment).

KSBs: Abstraction, reducing complexity, increasing
efficiency. Challenge: Design a number guessing game
that uses abstractions to write clear, debuggable, im-
provable programs.

Introduction to lists to store
data; programs that access
and manipulate list contents.

KSBs: Use lists to store sensor data.
Challenge: Design and model an environment to moni-
tor and adjust temperature and light to protect museum
artwork.

KSBs: Using lists to store sequence data.
Challenge: Design a Simon game where a list can store
a sequence of lights that the user must repeat.

Nesting lists. KSBs: List matrices used to record ordered pairs to repre-
sent sensor measurements at various times.
Challenge: Continue with above.

KSBs: List matrices, placing lists within lists.
Challenge: Continue Simon game development.

Combining list operations;
higher-order list-processing
functions.

KSBs: Use the map function to scale data before graph-
ing. Use combine to find the mean of data.
Challenge: Continue with above.

KSBs: Combining lists, linked to writing a script for the
"add item" button.
Challenge: Continue with above.

Algorithms and data; graph-
ing; timers; reporters.

KSBs: Acting on input data algorithmically. Controlling
multiple outputs.
Challenge: Continue with above.

KSBs: Timers, reporters, modeling a graphing app.
Challenge: Design a simulation relating population size
to the rate of disease spread.

and understanding and what instructional practices might be
implemented as teachers hone their CT skills.

Summary
Integrating CS principles and CT within T&E can expand the role
the discipline plays in all students’ fundamental education, can
broaden participation in computing education, and can increase
T&E’s status within the educational system.

Presently, no discipline has taken upon itself the responsibility of
being the primary instructional vehicle to teach CT in the nation’s
schools. T&E can take great advantage of this opportunity―
without compromising the discipline’s core mission of teaching
students about the human-made world—by integrating CS & CT
principles, practices, and vocabulary with core T&E concepts. It
is feasible to teach CT and computer science skills by incorporat-
ing real-world computing problems into T&E design challenges.

integrating computational thinking into T&E education

December/January 2018 technology and engineering teacher 13

integrating computational thinking into T&E education

Doing so will require changes in curriculum and in the way
teachers at preservice and inservice levels are prepared. This
is well within the capability of those in our profession who are
willing to be courageous enough to learn the necessary skills to
lead what could be a transformative reform effort, well aligned
with the transition from technology education to technology and
engineering education.

The integration of CS and CT within T&E provides a rich area of
inquiry for researchers to investigate how educators within and
beyond T&E might optimize curriculum and pedagogy focused
on broadening CS and CT participation.

References
Barbato, S. (2017, January 3). Personal email correspondence.
Barr, D., Harrision, J., & Conery, L. (2011). Computational think-

ing: A digital age skill for everyone. International Society for
Technology in Education (ISTE), p. 21. Retrieved from
www.iste.org/docs/learning-and-leading-docs/march-
2011-computational-thinking-ll386.pdf

Burghardt, M. D. & Hacker, M. (2004). Informed design: A
contemporary approach to design pedagogy as the core
process in technology. The Technology Teacher, 64(1), 6-8.

Computer Science Teachers Association (CSTA) Standards Task
Force. (2011). In CSTA K-12 computer science standards, p. 9.
Retrieved from http://c.ymcdn.com/sites/www.csteachers.
org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf

Darling-Hammond, L. & McLaughlin, M. (1995). Policies that sup-
port professional development in an era of reform. Phi Delta
Kappan, 76, 597-604.

Denning, P. J. (2009). The profession of IT: Beyond computational
thinking. Communications of the ACM, 52(6), 28-30. doi:
10.1145/1516046.1516054.

Gov.UK. (2013, September 11). National curriculum in England:
computing programmes of study, p. 1. London, England: De-
partment for Education.

Guzdial, M. (2012, October 22). Why isn’t there more computer
science in U.S. high schools? Blog@CACM. Retrieved from
https://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-
there-more-computer-science-in-u-s-high-schools/fulltext

Hofstra University. (2004). The New York State curriculum for ad-
vanced technological education (NYSCATE). Retrieved from
www.hofstra.edu/academics/colleges/seas/ctl/nyscate/
index.html

Hofstra University. (2008). The Mathematics, Science, and Tech-
nology Partnership Project (MSTP). Retrieved from
www.hofstra.edu/academics/colleges/seas/ctl/mstp/index.
html

Table 2. Sample Two-Week Workshop Schedule

Week 1 Monday Tuesday Wednesday Thursday Friday

AM

Introduction to integrat-
ing CS and CT within
T&E. First look at Snap!
Developing a phone app.

Build your own block!
Blocks and scripts. Intro
to control technology.
Use blocks to control an
LED.

Intro to lists and matrix
design tools. Intro to
abstraction.
Complete white-blood-
cell challenge.

More complex lists
(e.g., nested) and pro-
grams. Use condition-
als to control motor
and servo outputs.

More complex algorithms.
AI and its role in game
design.
Complete Tic-Tac-Toe
game challenge.

PM

Experiment with basic
commands. Write a pro-
gram to move a sprite.
On-screen drawing;
make sprite follow the
mouse.

Use scripts to create a
light sequence. Complete
the EMS station chal-
lenge.
Discuss societal aspects,
e.g., games & violence;
discuss Blown to Bits
book.

Game design using
conditionals and script
variables.
Design a forest fire game:
be a hero and put out
a fire!
Discuss privacy issues.

Design, make, and
program a simple
vehicle that reverses
when it touches an
object. Discuss copy-
rights and how they
work in the computer
world.

Use script variables. Link-
ing game screen activity
to HB inputs. Complete
on-screen "Where in the
World" challenge (to deter-
mine the best places to live
in the future) using four
digital inputs.

Week 2 Monday Tuesday Wednesday Thursday Friday

AM

Graphing in the real
world: using analog
inputs to display data on
screen. Data tables and
storing information.

Timers and timing.
Design an “against the
clock” number guessing
game and improve it to
store results of multiple
tries.

Using the design journal
as a scaffold, design,
make, and program a
four-mole Whack-a-Mole
on-screen game.

Using the design jour-
nal, design, make, and
program a vehicle that
follows a white line
guide track to enter a
radioactive environ-
ment.

Managing the integration
of CS and CT in the T&E
classroom.

PM

Design and make a
monitoring system for
grow room temperature.
Discuss encryption of
data.

Linking digital and
analog inputs to outputs.
Simulate a one-axis
prosthetic wrist. Discuss
the workplace impact of
robotics.

Extend the onscreen
game to the real world
using servos and
switches. Present your
work to group.

Improve the design to
grasp the radioactive
flask and remove it.

Present your work to
group. Group discussion;
implementation planning;
evaluation, and feedback.

https://www.iste.org/docs/learning-and-leading-docs/march-2011-computational-thinking-ll386.pdf
https://www.iste.org/docs/learning-and-leading-docs/march-2011-computational-thinking-ll386.pdf
http://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
http://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
https://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-u-s-high-schools/fulltext
https://cacm.acm.org/blogs/blog-cacm/156531-why-isnt-there-more-computer-science-in-u-s-high-schools/fulltext
http://www.hofstra.edu/academics/colleges/seas/ctl/nyscate/index.html
http://www.hofstra.edu/academics/colleges/seas/ctl/nyscate/index.html
http://www.hofstra.edu/academics/colleges/seas/ctl/mstp/index.html
http://www.hofstra.edu/academics/colleges/seas/ctl/mstp/index.html

 14 technology and engineering teacher December/January 2018

integrating computational thinking into T&E education

Loveland, T. (2012). Understanding and writing G & M code for
CNC machines. Technology and Engineering Teacher, 71(4):
24-29.

Loucks-Horsley, S., Stiles, K., Mundry, S., Love, N., & Hewson,
P. (2010). Designing professional development for teachers
of science and mathematics (3rd ed.). Thousand Oaks, CA:
Corwin Publishing.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N.
(2008). Programming by choice: Urban youth learning pro-
gramming with Scratch. ACM SIGCSE Bulletin, 40(1): 367-371.

MSPnet. (2016, January 27). The beauty and joy of comput-
ing website. Retrieved from http://hub.mspnet.org/index.
cfm/29055

National Academy of Sciences. (2010). Report of a workshop on
the scope and nature of computational thinking. Washington,
DC: National Academies Press.

NGSS Lead States. (2013). Next generation science standards:
For states, by states. Appendix F–Science and Engineering
Practices in the NGSS. Washington, DC: The National Acad-
emies Press. Retrieved from www.nextgenscience.org/sites/
default/files/Appendix%20F%20%20Science%20and%20
Engineering%20Practices%20in%20the%20NGSS%20-%20
FINAL%20060513.pdf

National Science Teachers Association (NSTA). (n.d.). Science
and engineering practices. Using mathematics and compu-
tational thinking. Retrieved from http://ngss.nsta.org/Prac-
tices.aspx?id=5

 Papert, S. (1980). Mindstorms: Children, computers, and powerful
ideas. New York: Basic Books.

President’s Information Technology Advisory Committee (PITAC).
(2005). Report to the President. Computational science:
Ensuring America’s competitiveness. Arlington, VA: National
Coordination Office for Information Technology Research
and Development.

Price, T., Albert, J., Catete, V., & Barnes, T. (2015). BJC in action:
Comparison of student perceptions of a computer sci-
ence principles course. Research in Equity and Sustained
Participation in Engineering, Computing, and Technology
(RESPECT). Retrieved from http://ieeexplore.ieee.org/
document/7296506/?reload=true

Rossouw, A., Hacker, M., & de Vries, M. J. (2011). Concepts and
contexts in engineering and technology education: An inter-
national and interdisciplinary Delphi study. International Jour-
nal of Technology and Design Education, 21, 409. doi:10.1007/
s10798-010-9129-1.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-
May, C., & Wildeman, B. (2012). Infusing computational
thinking into the middle- and high-school curriculum. In:
Proceedings of the 17th ACM Conference on Innovation and
Technology in Computer Science Education. Association for
Computing Machinery, New York, pp 22-27.

Singer, N. (2017, June 6). The Silicon Valley billionaires remak-
ing America’s schools. The New York Times. Retrieved from
https://mobile.nytimes.com/2017/06/06/technology/tech-
billionaires-education-zuckerberg-facebook-hastings.html

Snyder, L., Astrachan, O., Briggs, A., & Cuny, J. (2010). An open
letter to the computer science community: AP computer
science principles. Retrieved from https://csprinciples.
cs.washington.edu/thecase.html

Teaching-Certification.com. (2011-2016). Computer science teach-
er certification. Retrieved from www.teaching-certification.
com/computer-science-teacher-certification.html

Weintrop, D., Beheshti, El., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science
Education and Technology, 25, 125-147. DOI 1.1007/s10956-
015-9581-5.

Wing, J. M. (2006, March). Viewpoint. Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2009). Computational thinking. Journal of Computing
Sciences in Colleges 24(6), 6-7.

Wing, J. M. (2016, March 24). Computational thinking, 10 years
later. Phys.org. Retrieved from https://phys.org/news/2016-
03-years.html

Acknowledgements
The author would like to acknowledge the contributions made by
several colleagues to his understanding of the potential of com-
putational thinking to support T&E instruction. Dr. Tiffany Barnes
(North Carolina State University) and Tony Gordon (Hofstra
University) helped the author to better understand how CT might
be integrated within robotics and gaming contexts; and Dr. Janet
Kolodner (The Concord Consortium) framed the research ques-
tions suggested herein as potential research opportunities.

Michael Hacker, Ph.D., DTE, is Co-Director
of the Hofstra University Center for STEM Re-
search. He served as the EfA Project Principal
Investigator. He can be reached at Michael.
Hacker@hofstra.edu.

This is a refereed article.

http://hub.mspnet.org/index.cfm/29055
http://hub.mspnet.org/index.cfm/29055
https://www.nextgenscience.org/sites/default/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
https://www.nextgenscience.org/sites/default/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
https://www.nextgenscience.org/sites/default/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
https://www.nextgenscience.org/sites/default/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf
http://ngss.nsta.org/Practices.aspx?id=5
http://ngss.nsta.org/Practices.aspx?id=5
http://ieeexplore.ieee.org/document/7296506/?reload=true
http://ieeexplore.ieee.org/document/7296506/?reload=true
https://mobile.nytimes.com/2017/06/06/technology/tech-billionaires-education-zuckerberg-facebook-hastings.html
https://mobile.nytimes.com/2017/06/06/technology/tech-billionaires-education-zuckerberg-facebook-hastings.html
https://csprinciples.cs.washington.edu/thecase.html
https://csprinciples.cs.washington.edu/thecase.html
http://www.teaching-certification.com/computer-science-teacher-certification.html
http://www.teaching-certification.com/computer-science-teacher-certification.html
https://phys.org/news/2016-03-years.html
https://phys.org/news/2016-03-years.html
mailto:Michael.Hacker%40hofstra.edu?subject=
mailto:Michael.Hacker%40hofstra.edu?subject=

