

The Computer Science and Computational Thinking of STEM

SCIENCE | TECHNOLOGY | ENGINEERING | MATHEMATICS

NSTA STEM Forum & Expo July 26, 2019 Dr. Tyler Love Penn State University, Harrisburg tsl48@psu.edu

00

Outline of the Presentation

- Define terms related to computational thinking
- Examine research surrounding computational thinking and STEM
- Examples of coding and STEM integration

Defining Computational Thinking

What is Computational Thinking?

A problem solving process of organizing information and thinking to allow a computer to generate solutions (identifies patterns and generates algorithms to predict future patterns).

How does this differ from the definitions of coding, programming, computer science?

https://www.iteea.org/Resources1507/C omputationalThinking.aspx

ITEEA Computational Thinking

COMPUTATIONAL THINKING

How it's defined. How it's practiced. Learn More!

Overview

Computational Thinking Defined

Computational Thinking Practiced

Computational Thinking Resources

Computational Thinking Resources

ADDITIONAL RESOURCES WILL BE POSTED AS THEY BECOME AVAILABLE. PLEASE CHECK BACK.

Defining Integrative STEM Education

" the application of technological/engineering design based pedagogical approaches to intentionally teach content and practices of science and mathematics education through the content and practices of technology/engineering education. Integrative STEM Education is equally applicable at the natural intersections of learning within the continuum of content areas, educational environments, and academic levels" (Wells & Ernst, 2012/2015). (as adapted from Wells/Sanders program documents 2006-10).

The Status of Computer Science in U.S. Schools as of 2019

- Many Governors have supported the CS in every school initiative
- NJ and MD include Computational Thinking in their T&E Standards
- At least 35 states allow CS courses to count toward HS graduation
- Maryland is currently the only state allowing CS courses to replace T&E Education courses for graduation
- Multiple studies have shown vast differences among CS and T&E curricula and standards
- There is a need for curricula that apply computational thinking as a tool to teach T&E content through hands-on, design-based approaches
 - Often referred to as "Physical Computing"

Tech Ed/Computer Science Graduation Requirement in Maryland

MSDE Preapproved Courses for Technology Education Graduation Credit		
Engineering Design-Based Courses	Computer Science-Based Courses	
 ITEEA's Foundations of Technology Project Lead the Way Introduction to Engineering Design* Project Lead the Way Principles of Engineering* 	 Exploring Computer Science Foundations of Computer Science* Advanced Placement Computer Science Principles 	

http://www.marylandpublicschools.org/programs/Do cuments/CTE/TE/TEGradCreditOptions.pdf

How Similar are Computer Science and Technology Education Standards?

Love, T. S., & Strimel, G. (2017). Computer science and technology and engineering education: A content analysis of standards and curricular resources. *The Journal of Technology Studies, 42*(2), 76-88. Retrieved from https://scholar.lib.vt.edu/ejournals/JOTS/v42/v42n2/pdf/love.pdf

Curricular Resource	Description	STL Designed World Components		
Precision Farming	The FarmBot is an example of an open-source CNC system operating from Arduino and Raspberry Pi coding that makes precision farming possible (Lentz, 2016). Teachers can work with students to create a track structure (structural and manufacturing technologies) and program (information and communication systems) for more efficient crop growth (agricultural and biotechnology).	Cyber Security	This unit from ITEEA's Advanced Technological Applications (ATA) curriculum was developed in collaboration with the U.S. Naval Academy and addresses an array of science, technology, engineering, and mathematics (STEM) standards. Current	1
Microcomputers and Sensors (e.g., Raspberry Pi)	Love, Tomlinson, and Dunn (2016) provided a wealth of instructional resources for utilizing programming to control various sensors and solve authentic engineering design challenges such as a smart house.		security through representational fluency, which is a powerful tool to teach complex concepts in science and mathematics.	
Scientific and Technical Visualization I & II	These standards-based curricula by ITEEA (p. 7) are focused on using complex graphic and visualization tools such as graphics and animation software to illustrate, explain, and present technical, mathematical, and scientific concepts. Ernst and Clark (2007) demonstrated learning gains related to the various designed world components as a result of these curricula.	Advanced Manufacturing	Loveland (2012) demonstrated how learning basic G & M code promotes higher order technology and mathematics thinking. Students must apply advanced math and technological problem solving skills to operate computer numerical control (CNC) lathes, milling machines, and routers. Even if schools do not have these advanced manufacturing machines, students can still simulate the manufacturing process through Computer Aided	I, Ma
Game Art and Design	This standards-based curricula by ITEEA (p.7) teaches students about the basics of game theory and strategic thinking to create a working prototype of a board game. In this curricula, students learn basic knowledge and skills that relate to fundamental programming concepts associated with the industry. Lesson topics such as probability and Nash Equilibrium have proven to be important in many fields of learning including biology, computer science, politics, agriculture, and economics. Ernst and Clark (2007) found this curriculum to be very engaging while addressing many technology and science standards.	Robotics	Manufacturing (CAM) software. There are various robotics curricula available that can be beneficial to student learning, for example, as Berenguel et al. (2015) demonstrated. Those that go beyond kits, and require students to design and construct their own robotic systems apply many STEM skills. Additionally, they integrate programming with engineering design to solve problems related to many of the designed world components.	C, E, I, Ma, T
		2017 STEM CER		

How Similar are Computer Science and Technology Education Courses?

 Buckler, C., Koperski, K., & Loveland, T. R. (2017). Is computer science compatible with technological literacy? Technology and Engineering Teacher, 77(4), 15-20.

Physical Computing: Integrating Computer Science and Hands-On STEM

- What is Physical Computing?
- "Teaches students about computer science and computational thinking through physical tools and hands-on activities."
- Genota, L. (2019, January 23). 'Physical computing' connects computer science with hands-on learning. Education Week. Retrieved from
 - https://www.edweek.org/ew/articles/2019/01/23 /physical-computing-connects-computerscience-with-hands-on.html

What Integrative STEM and Physical Computing looks like: Soft Robotics for EbD[™] with Purdue University

eTextiles with Elementary Students at Purdue University

Laser tag vest using micro:bit

(Love & Bhatty, in

press).

The Crumble: What is it?

https://vimeo.com/940 Micro USB 97687 An **inexpensive**, easy to use, robust controller Power In (4.5 to 5.5V) Power Out that can be programmed using free Input/Output A Input/Output D drag and drop **block** coding software. Input/Output B Input/Output C Connects to many external sensors via Motor 1 Motor 2 alligator clips and has been used with multiple open-ended Motor 1 LED Motor 2 LED design challenges

The Crumble: Where Can You Find It?

- In the U.S. TeacherGeek
 <u>https://teachergeek.com/collections/crumble</u>
- Redfern Electronics (manufacturer) <u>https://redfernelectronics.co.uk/crumble/</u>
- <u>FREE</u> downloadable software from Redfern Website
- Works on Mac, Windows, and Google Chromebooks (requires a USB port)
- *Can be used with TeacherGeek fabrication materials or other common materials

Crumble Demonstration Using Sparkles: VERY User Friendly!

https://redfernelectronics.co.uk/getting-started/guide-to-usingcrumbs/

The Collision Avoidance Design Challenge

- Developed to apply coding skills for designing a solution to an authentic challenge, while reinforcing various integrated STEM concepts
- Context: Distracted driving is a major safety concern in the U.S. Many sensors and electronic components in cars help improve safety. IIHS estimated that 11% of distracted driving accidents in the U.S. could have been avoided with sensors like a collision avoidance system.

*Love, T. S., & Bhatty, A. (2019). The crumble: Integrating computer science through engineering design. The Technology and Engineering Teacher, 79(2).

The Collision Avoidance Design Challenge Continued

- <u>Addresses various standards:</u> NGSS, STL, K-12 CS Framework, 21ST Century Skills, Engineering Habits of Mind
- <u>Materials</u>: Crumble, wires with alligator clips, ultrasonic sensor, sparkles, wheels, motor, gears, axels, batteries, any fabrication materials (ex. cardboard).
- Evaluation Criteria: Students will be evaluated on a vocabulary quiz, their documentation through the engineering design process, a workable code/circuit, a workable vehicle, and the accuracy of their data collection/calculations for velocity and acceleration.
- *Love, T. S., & Bhatty, A. (2019). The crumble: Integrating computer science through engineering design. *The Technology and Engineering Teacher, 7*9(2).

Engineer:

The Collision Avoidance Design Challenge: 6E Phases - Engineer

- Students drew a schematic of how their circuit might appear. Needed instructor approval before obtaining fabrication materials.
- Students set up their circuit and
 - programed it first.
- After a working circuit and program were created, then students designed their vehicle and built it.
- Straws must be straight for axels!

The Collision Avoidance Design Challenge: 6E Phases - Engineer

Engineer:

Prototype Example

The Collision Avoidance Design Challenge: 6E Phases - Enrich

Enrich:

- Students designed a more advanced prototype
 - Can use foam or other materials
 - 3D design software
 - 3D print car body
- Used OnShape great for schools
- STL file on website in resources slide

The Collision Avoidance Design Challenge: 6E Phases - Enrich

Enrich: OnShape Examples

The Collision Avoidance Design Challenge: 6E Phases – ENRICH STEM

STEM Concepts/Data Collection:

- Physics Calculated the deceleration when sensing an object, used to adjust the program
 - V=d x †
 - (∨f-vi)/†
- Math Graphed results and predicted
- Other topics discussed: Newton's 1st and 2nd Laws of Motion, friction, gear ratio, momentum, and horsepower

Instructional Resources for the Crumble

<u>https://sites.google.com/a/vt.edu/crumble/</u>

<u>https://redfernelectronics.co.uk/projects/</u>

Design Challenge	Source
Parking Sensor	https://redfernelectronics.co.uk/projects/parki ng-sensor/
Card Buggy	https://redfernelectronics.co.uk/cardbuggy/
River Pollution Monitoring System	https://community.computingatschool.org.uk/r esources/5229/single
Fairground Ride	https://community.computingatschool.org.uk/r esources/4167/single
Robot Instruments/ Orchestra	https://www.manchester.ac.uk/connect/teac hers/teacher-events- resources/resources/robot-orchestra-kit/

 Moisture Sensor and Plant Watering System Challenge

• eTextiles and Smart Clothing with conductive thread

<u>https://en.wikibooks.org/wiki/KS3_Computing/Projects_Ideas/Creating_wearable_tech_using_a_crumble</u>

Additional Design Challenge Ideas: Integrating Literacy

Additional Design Challenge Ideas: Integrating Literacy

 Love, T. S., & Greiss, C. J. (in press). Rosie Revere's orangutan dilemma: Integrating engineering design and computational thinking in the elementary classroom. Science and Children.

• Silent Alarm Scanner Bot

 <u>https://rundontwalk.co.uk/2018/1</u> 2/07/crumble-creationscontinued/

Motion Activated Trash Bin

 <u>https://redfernelectronics.co.uk/</u> projects/creating-automationproject/

 High Water
 Pump (sump pump) with
 Alarm

• <u>https://redfernelectronics.co.</u> <u>uk/projects/creating-</u> <u>automation-project/</u>

Various amusement park ride ideas (ex. Ferris Wheel with automated stops)

w 2017 STEIM CENTER TOF TEACHING and Learning

ITEEA EbD Curriculum Example: Grade 6 Big Idea

Programming Devices for Energy Savings

Students are provided with an overview of programming, coding, and electronics concepts using everyday examples. Students will enhance their knowledge and apply it by creating a prototype of an automated energy saving device.

Automated Farming Example FarmBot

FarmBot intro video -

https://www.youtube.com/watch?v=uNkADHZStDE

Other Programmable Devices

Hummingbird

- <u>https://www.hummingbirdkit.com/</u>
- Can span Elementary through High School

HUMMINGBIRD Recommended Software

CREATE Lab # ć **Visual Programmer** i ć g Snap! Elementary Middle i ć () Scratch School BirdBlox iOS ۳ć Ardublock ۲É Arduino Hiah School+ ٤ć Python Click on a programming language to learn more!

Microcomputers

Arduino or Raspberry Pi

- <u>https://projects.raspberrypi.org/en/</u>
- Steeper learning curve for electronic sensors and coding language (Python)
- Love, T. S., Tomlinson, J., & Dunn, D. (2016). The orange pi: Integrating programming through electronic technology. The Technology and Engineering Teacher, 76(2), 24-29.

Steve Barbato, DTE Executive Director, ITEEA <u>sbarbato@iteea.org</u>

Jennifer Buelin, Ed.D., NBCT Director, ITEEA/STEM Center for Teaching and Learning™ jkbuelin@iteea.org

Nancye Hart, DTE, NBCT Professional Development Coordinator ITEEA/STEM Center for Teaching and Learning™ nhart@iteea.org

Cindy Yandle Curriculum Coordinator ITEEA/STEM Center for Teaching and Learning™ Technical Support Coordinator cyandle@iteea.org

Tyler S. Love, Ph.D. ITEEA Safety Editor Assistant Professor of Elementary/Middle Grades STEM Education Penn State University, Harrisburg tsl48@psu.edu

