
Computational Thinking
Joe McCade and Adam Kennedy

Why Computational Thinking?

In 2015, national educational policies in the United
States specifically included references to CS as part
of a well-rounded science, technology, engineering,
and mathematics (STEM) education, and the term
“computational thinking” was added to the Next
Generation Science Standards as a core scientific
practice that could be applied across many science
content areas (Weintrop et al. 2015)

Why Computational Thinking?

• After a two-year process, Carnegie Mellon Robotics
Academy and the University of Pittsburgh’s Learning
Research and Development Center have had a research
study published by the prestigious Association for
Computing Machinery, entitled Developing Computational
Thinking through a Virtual Robotics Programming
Curriculum.

• ITEEA has endorsed the engineering levels of
Robomatter’s Robotics Curriculum Continuum through
its Engineering byDesign™ (EbD) standard, The
Engineering Endorsement Matrix.

https://dl.acm.org/citation.cfm?id=3104982

Is Computational Thinking learning
about computers?

• No – it is an approach to solving problems

• It combines mathematics, logic and algorithms,
and teaches you a new way to think about the
world. (Crow. 2014)

https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick

Who proposed Computational Thinking?

• CT was originally developed by a computer
scientist – Jeannette Wing

• CT can be defined as “an approach to solving
problems in a way that can be solved by a
computer. .” (Barr and Stephenson 2011)

• but the computer can be a human

What can we compare CT to?

• Scientists seek to show that theories fit the
data;

•mathematicians seek to show logical proof of
abstract connections;

• engineers seek to demonstrate that designs
work

• (AAAS – Science for All Americans)

Computer Scientist are equally
evangelical about their approach

Computational thinking teaches you how to
tackle large problems by breaking them down
into a sequence of smaller, more manageable
problems. It allows you to tackle complex
problems in efficient ways that operate at huge
scale. It involves creating models of the real
world with a suitable level of abstraction, and
focus on the most pertinent aspects. It helps you
go from specific solutions to general ones.

What have we done at MU?

•A few years ago we split our EPT class dividing
Transportation from Energy and Power. We linked
Automation with Transportation to create a new
course which replaced Power Conversion and
Control.

• For the Automation portion of the course we
adopted the RobotMatter Curriculum using both
the Virtual world and VEX robots to match the
popular platform for robotics competitions.

This semester Adam’s project is to
covert the programming challenges
into engineering/design challenges
that include CT

We adopted a four part model for CT:

1. Decomposition: Breaking down data, processes,
or problems into smaller, manageable parts

2. Pattern Recognition: Observing patterns, trends,
and regularities in data

3. Abstraction: Identifying the general principles
that generate these patterns

4. Algorithm Design: Developing the step by step
instructions for solving this and similar problem

We map those against nine design strategies
Design Strategies (Chrismond & Adams, 2012)

1. Understand the Challenge

2. Build Knowledge

3. Generate Ideas

4. Represent Ideas

5. Weigh Options & Make Decisions

6. Conduct Experiments

7. Troubleshoot

8. Revise/Iterate

9. Reflect on Process

https://www.linkengineering.org/File.aspx?id=3158&v=7b16edef

Title and Content Layout with Chart

Design Strategies Computational
Thinking

Integration (six strategies)

Understand the
Challenge

Decomposition Ask: investigate the problem breaking it
down including specifications and
component parts

Build Knowledge Pattern
recognition

Research: find information related to
the challenge including trends and
commonalities

Represent Ideas Pattern
generalization and
abstraction

Plan: brainstorm potential solutions

Weight Options
and make
decisions

Algorithm design Create: select a solution
Additional steps include: test, evaluate

https://www.linkengineering.org/File.aspx?id=3158&v=7b16edef

