Mainstreaming Green Chemistry Webinar Series

The GC3's Agenda to Mainstream Green Chemistry: What it Says and What it Means in Practice

January 25, 2016

What is the GC3?

A business membership organization working collaboratively to accelerate the application of green chemistry across industry sectors and supply chains

<u>Mission</u> is to make green chemistry standard practice in industry, for innovation, public health, and environmental protection

Johnson-Johnson 75 Members, Including:

Growth in demands for safer chemicals and products

- During the past 10 years, significant increase in demands for safer chemicals and products
- Growth of green chemistry research, education, awards
- Unprecedented growth in collaborations between sectors and within supply chains to advance safer, more sustainable chemicals and products, and green chemistry research and education
- An increasing number of green chemistry success stories but:

We have made progress but have a long way to go...

- Despite significant successes in programs, collaborations and recognition of need, it's still a marginal consideration.
- The green chemistry community lacks a coherent long term strategy, strong coordination, and significant, stable funding.
- Yet to be integrated into fabric of education, R&D or the chemical enterprise
- Much of the progress has been on the demand side and not on the supply side. Supply of green chemistry solutions has not kept pace

GC3 Agenda to Mainstream Green Chemistry

- Based on research, collaborative initiatives and dialogue outline a strategic path forward to accelerate research and adoption of green chemistry
- Short term goals
 - Scale green chemistry innovation
 - Elevate the importance of green chemistry in education and research
 - Develop and pass smart policies that support markets, research, and innovation

Moving forward

- This is a unique time to accelerate the growth of green chemistry
- But this requires vision, leadership, resources, and collaboration across sectors and stakeholder groups (government, industrial, academic)
- The Agenda creates an imperative for action by putting in one place an explanation of green chemistry, it's benefits, barriers and drivers, strategies to overcome barriers and strategic GC3 actions

Using the Agenda

- Government: As a roadmap for developing national strategy/framework
- Companies: To help guide R&D strategy, stakeholder engagement
- Researchers and educators: To advocate for increased funding, establishment of academic programs, and to link more closely with business/societal need
- Advocates: To prioritize the importance of leadership and funding for solutions

Today's Speakers

Amy Perlmutter

Babette Petterson

Principal Perlmutter Associates

President, Stewardship & Sustainability
The Valspar Corporation

Chief Commercial Officer BioAmber, Inc.

Ground Rules

- Due to the number of participants in the webinar, all lines will be muted
- If you have a question or comment, please type in the Q&A box located in the dropdown control panel at the top of the screen
- Questions will be answered at the end of the presentations

The GC3's Agenda to Mainstream Green Chemistry: What it Says and What it Means in Practice

Amy Perlmutter January 25, 2016

An Agenda to Mainstream Green Chemistry

Green Chemistry & Commerce Council

Agenda Goals:

- Scale green chemistry innovation
- Elevate the importance of green chemistry in education and research
- Develop and pass smart policies that support markets, research, and innovation

Process

- Literature review
- GC3 member survey
- Original research (metrics, barriers, business case)
- Input at Roundtables
- Input from advisory committee

Advisory Committee

- Eric Beckman, University of Pittsburgh
- Mark Brady, Business Oregon
- David Constable, American Chemistry Society
- Tracey Easthope, Michigan Ecology Center
- Mary Grim, Timberland LLC
- Al Innes, Minnesota Pollution Control Agency
- Bob Israel, Valspar Corporation
- Julie Jones, Advancing Green Chemistry
- Kendra Martz, Construction Specialties, Inc.
- Marty Mulvihill, UC Berkeley
- Beverly Thorpe, Clean Production Action
- Martin Wolf, Seventh Generation
- Ken Zarker, Washington State Department of Ecology

Contents:

Why An Agenda to Mainstream GC?

- Overview
- Defining Green Chemistry
- How Green Chemistry is Practiced
- The Growth of Green Chemistry
- The Case for Green Chemistry
- Drivers and Barriers

Five Key Strategies
Taking Action

Defining Green Chemistry

- The design of chemical products/processes that reduce or eliminate the use and generation of hazardous substances throughout their lifecycle.
- Builds on conventional chemistry and engineering by applying 12 fundamental principles that guide molecular design of sustainable chemical products/processes.
- Product developers, manufacturers, retailers, brands: all play important role in implementation.
- Can be an iterative process or it can yield a disruptive innovation.

Drivers of Green Chemistry

TABLE 1: Top Ranked Drivers of Green Chemistry by Business Type for GC3 Members

	Chemical Mfr	Product Mfr	Product Brand	Retailer
Concern for Worker Health/Safety	~	V	V	V
Concern for Environment	V	V	V	V
Competitive Advantage	V	V	V	V
Fits Our Brand	V	V	<i>V</i>	<i>' ' '</i>
Customer Demand	V	V		
Risk Avoidance/Reduction		V	V	
Profits Generated	V			
Cost Savings		V		
Opens New Markets	V			

Barriers Green Chemistr	

Development, Identification, and Evaluation of Green Chemistry Innovations High cost and long time frame to research, develop, test, and scale up safer alternatives Perception of lack of value in pursuing green chemistry Lack of sufficient information available to assess chemical hazards Lack of financial and policy support for green chemistry research and companies Regulatory uncertainty Externalization of costs (public health, environmental degradation) of conventional chemistry **Supply-Chain Alignment** Lack of technically and/or economically feasible safer alternatives High cost, time, and risk of incorporating alternatives (performance, testing, regulatory, product redesign, etc.) Perceived high cost of green chemistry alternatives Lack of transparency in supply chain Requirements for supply-chain transparency Incumbency of existing chemicals and markets Multiple complex supply chains for any given chemical Risks of switching not shared across supply chain Supply and demand not in sync Lack of communication within supply chains **Education** Lack of green chemistry-trained chemists and chemical engineers Lack of alignment of industry need and academic workforce Inertia and incumbency of traditional chemistry education **Metrics** Lack of agreement on what should be "counted" as green chemistry Lack of data to measure progress and make the case for green chemistry benefits

The GC3 calls for continuing research and dialogue among stakeholders to keep an up-todate understanding of the changing market factors driving and holding back green chemistry and adoption, and to use this understanding to grow green chemistry practice.

The GC3 calls for and will support smart state and federal policies that accelerate and enhance green chemistry innovation and adoption.

The GC3 supports efforts that help create collaborations within and among supply chains and industry sectors, and which involve other key stakeholders, for the purposes of growing demand, building capacity, stimulating innovation, and improving information flow.

The GC3 supports the dissemination of information to the marketplace that supports green chemistry education, research, and practice.

The GC3 supports the development and use of metrics to track and understand green chemistry benefits and progress.

Taking Action:

• Support the proposed federal "Sustainable Chemistry R&D Act of 2015" or similar legislation that meets the GC3's criteria of smart policies

(Status: held Congressional briefing Jan 13, 2016)

 Expand the development and use of innovative tools and resources to accelerate green chemistry

(Status: launching/revamping Portals: Innovation, Retail, Education)

Taking Action:

 Convene a National Summit on Green Chemistry Education

(Status: to be developed)

 Build agreement on priority metrics needed to measure progress in GC and ways to gather such metrics

(Status: will hold meeting at GC3 Roundtable this year)

Taking Action:

 Engage with public and private sector funding entities to target critical green chemistry needs

(Status: to be developed)

 Advance collaborative supply chain partnerships

(Status: Preservatives Project underway, additional project TBD)

	Action
GC3 Actions, Barriers Addressed, and Strategies Used	Support the proposed federal "Sustainable Chemistry Research and Development Act of 2015," or similar legislation that meets the GC3's criteria for "smart policies"
	Expand the development and use of innovative tools and resources to accelerate green chemistry
	Convene a National Summit on Green Chemistry Research and Education
	Build agreement on the priority metrics needed in the short term to measure progress in green chemistry and ways to gather such information
	Engage with federal agencie to open funding channels targeted at critical green chemistry needs
	Advance Collaborative Supply-Chain Partnerships

federal "Sustainable Chemistry Research and Development Act of 2015," or similar legislation that meets the GC3's criteria for "smart policies"
Expand the development and use of innovative tools and resources to accelerate green chemistry
Convene a National Summit on Green Chemistry Research and Education
Build agreement on the priority metrics needed in the short term to measure progress in green chemistry and ways to gather such information
Engage with federal agencies to open funding channels targeted at critical green chemistry needs
Advance Collaborative

	Perception of lack of value in pursuing green chemistry High cost and long time frame to research, develop, test, and scale up safer alternatives	:	Enhance Market Dynamics Support Smart Policies
	Lack of technically and/or economically feasible alternatives		
•	Lack of green chemistry-trained chemists and chemical engineers		
•	High cost and long time frame to research, develop, test, and scale up safer alternatives		Foster Collaborations Inform the Marketplace
٠	Incumbency of existing chemicals and markets		
٠	Supply and demand not in sync		
•	Lack of green chemistry-trained chemists and chmiecal engineers		
•	Lack of green chemistry-trained chemists and chemical engineers	:	Enhance Market Dynamics Inform the Marketplace
٠	Lack of alignment of industry need and academic workforce		•
•	Inertia and incumbency of traditional chemistry education		
•	Lack of agreement on what should be "counted" as green chemistry	:	Enhance Market Dynamics Track Progress
	Lack of data to measure progress and make the case for green chemistry benefits		
•	High cost and long time frame to research, develop, test, and scale up safer alternatives		Enhance Market Dynamics Support Smart Policies
٠	Lack of financial and policy support for green chemistry research and companies		
٠	Lack of technically and/or economically feasible safer alternatives		
•	Incumbency of existing chemicals and markets		
٠	Lack of technically and/or economically feasible safer alternatives		Enhance Market Dynamics Foster Collaborations
	Lack of communication within supply		

Key Strategles Addressed

Barriers Addressed

chains

An Agenda to Mainstream Green Chemistry

For more information

http://greenchemistryandcommerce.org/ projects/mainstreaming

mainstream@greenchemistryandcommerce.org

How Do We Mainstream Green Chemistry?

How do you eat an elephant?

Realities that exist today

- The combative approach consensus of what success looks like
- Resistance to change
- The supply & demand cost paradigm
- Fear of the low cost, non-green competitor
- Conflicting beliefs and application of Hazard vs Risk
- Conflicting stakeholder communication
- Consumers don't know what to believe
- Multiple green standards/specifications
- The all or nothing approach to green
- The pull for green chemistry only happens quickly in the face of calamity

The question becomes one of 'how' to mainstream Green Chemistry

- Who are the stakeholders?
 - Chemical manufacturers
 - Brand owners/formulators
 - Retailers
 - Consumers
 - Government
 - NGOs
 - Investors
 - Academia/Scientific Community
 - Others?
- What role do these stakeholders have to contribute to green chemistry?

What Needs to Change?

- Stakeholders need to realize their role in mainstreaming green chemistry
- Antagonistic/combative approaches causes consumer confusion, lack of stakeholder consensus, trust and conflicting communication
- We need to move from 'taking out the bad' to 'building in the good'
- A positive proactive approach to problem solving that aligns stakeholders
- Removing barriers to innovation and green chemistry requires that stakeholders are aligned and embrace their roles in the process
- Green Chemistry is a journey. Therefore stakeholders must accept a continuous improvement approach
- Stakeholder collaborations need to broaden

A Holistic Approach to Green Chemistry

- Needs to happen on a Macro and Micro scale
- Broader collaboration among stakeholders
- 'Building in the good' as part of new innovation
- Agreement on priorities in need of green chemistry solutions
- Expediting and incentivizing green chemistry
- Market entry vs current technology understanding the value of green chemistry solutions
- Embracing continuous improvement
- Creating trust among stakeholders
- Consensus on science
- Consensus on communication

So what's needed?

- Macro approach
- Government Framework to green chemistry incentives, subsidies, grants
- An education system that teaches the necessity for green chemistry and engineering
- Stakeholder consensus on priorities, targets and investments
- Stakeholder consensus on science, specifically toxicology
- Acceptance of the cost, performance, green chemistry confluence (continuous improvement)
- Micro approach
- Broad stakeholder collaborations to solve specific problems
- Broad stakeholder consensus and communication
- Innovation that demands price, performance and 'green' on equal footing, always
- Incentives which reward these innovations
 - B2B, B2C, G2B, G2C

•You can't expect things to change if you don't change what you're doing!

•Thank You!

GC3 Webinar: Mainstreaming Green Chemistry Commercialization of bio-based chemicals

January 25th, 2016

WHO WE ARE BIOAMBER IS A SUSTAINABLE CHEMICALS COMPANY

Our offices

Key facts

NYSE listed: Since May 2013

Established: 2008

• Employees: 100

Montreal, QC Headquarters

Minneapolis, MN R&D Facility

Our manufacturing site

Pomacle, France Demonstration Plant 2010

Sarnia, Canada Commercial Plant 2015

WHAT WE DO WE MAKE CHEMICALS SUSTAINABLY

WE HAVE CAPACITYCOMMERCIAL PLANT OPENED AUGUST 2015

SARNIA 2015

30,000 SA

PLANT #2 Est. 2017

70,000 SA 100,000 BDO

CAPACITY
(Annual MT)

A MEANINGFUL IMPACT

A 30,000 MT capacity plant saves...

5.5M tree seedlings growing for 10 years

508,000 barrels of oil consumed

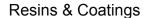
GHG Emissions of 45,000 US cars

Electricity use of 46,000 US homes

210,000 tons of CO₂ equivalent gas/year 2 trillion BTUs of energy/year

WHY IS THIS IMPORTANT GLOBAL MARKET TRENDS

Performance and Innovation



WE CREATE VALUE: PERFORMANCE AND SUSTAINABILITY

Alkyd Resins, Saturated Polyesters, UPR's, Polyurethane Dispersions

PU Leather, TPU's CPUs, PUD's, Adhesives and Foams

Natural Emollient Esters for Skincare and Haircare; biobased solutions for exfoliation

Natural Ingredients for multifunctional benefits; Flavor Enhancer; Salt Reducer

Bio Plastics

Polybutylene Succinate for range of applications; Paper Coatings, Packaging, Mulch Film & Durables

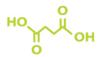
Bath Tablets

Natural effervescence for Bath Tablets and Bath Salts

Lubricants

Succinic esters for Lubricant Base Oils, or Additives

Flooring


Bio-Based. Phthalate-Free Plasticizers

BRIDGING ACCROSS THE VALUE CHAIN

MARKET PUSH AND MARKET PULL TO ACCELERATE ADOPTION

Reinventing the green process

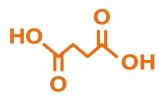
Manufacturer

- Better H&E Profile
- Reduces dependency on fossil feedstocks

- Corporate sustainability
- · Changing goals
- Brand Equity

VALUE CHAIN PARTNERSHIPS KEY TO SUCCESS

BIO-SA™


Coatings chemical

Textiles applications

Bio-Succinic Acid

- Impranil ® eco DL 519
- Impranil ® eco DLS
- Impranil ® eco DLP-R

Waterborne, solvent-free polyurethane dispersions for textile coatings with up to 65% bio-based content

PU-coated synthetic materials for footwear, garment and accessory. Enabling industry to meet sustainability aspirations

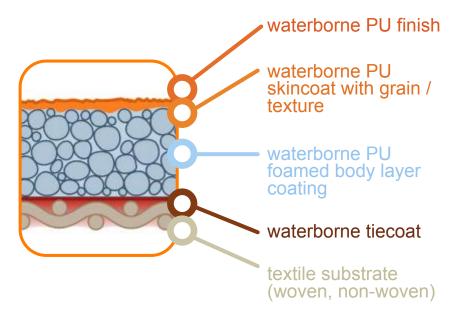
PERFORMANCE FROM NATURE INSQIN® TEXTILE COATINGS-SOLVENT FREE, WATERBOURNE

Covestro Developments with

WB PU for garment material that retains soft handle at all temperatures

WB PU for bag material that is

embossable



RENEWABLE MATERIALS FOR PU SYNTHETICS & TEXTILES

HIGH **PERFORMANCE BY NATURE**

& bioamber inspired

Impranil[®] eco DL 519 approx. 45% bio-based

Impranil® eco DLS approx. 56% bio-based

Impranil[®] eco DLP-R approx. 65% bio-based

BioAmber Inc.

1250 Rene Levesque Blvd West, Suite 4110 Montreal (Quebec) Canada H3B 4W8

Contact info

Babette Pettersen Chief Commercial Officer

C: +32 (0) 478.49.09.76 babette.pettersen@bio-amber.com

www.bio-amber.com

Upcoming Events

The Green Chemistry Portal's Ask the Innovators Series: How Green Is Your Raincoat?

On-line discussion, Wednesday, January 27th 11:30-1:00, EST

Thanks for joining us!

For more information about the GC3: www.greenchemistryandcommerce.org

