Arrakis Materials

www.activate.org/arrakis-materials

Minerals from CO₂

Arrakis Materials Founder

Ioana Knopf, CEO & Founder

- UPenn MS & BA | Chemistry
- MIT PhD | CO₂ Utilization & Catalysis
- 10 publications & 3 patents
- 5 years of early-stage startup experience

We make carbonates!

Carbonates = Solid Form of CO_2

- Permanent Carbon Storage
- Ubiquitous Utilization

Accelerating Carbon Mineralization

$$(Ca,Mg)SiO_3 + CO_2$$

Silicate Minerals

- Wollastonite
- Olivine
- Pyroxene

Carbon

Dioxide

 $(Ca,Mg)CO_3 + SiO_2$

Carbon-Negative Material Permanent CO₂ storage

Natural weathering = geological timescales e.g., 700-2100 years for olivine¹

Beach weathering of olivine sand described in "Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability", Hangx, S. J. T.; Spiers, C. J., Int. J. Greenhouse Gas Control 2009, 3 (6), 757–767.

² IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 7: Mineral carbonation and industrial uses of carbon dioxide (2005), p. 319-338

Accelerating Carbon Mineralization

$$(Ca,Mg)SiO_3 + CO_2$$

Silicate Minerals

- Wollastonite
- Olivine
- Pyroxene

Carbon

Dioxide

Carbon-Negative Material Permanent CO₂ storage

- Natural weathering = geological timescales e.g., 700-2100 years for olivine¹
- Accelerated weathering = high temperature & pressure
 e.g., olivine 185°C & 148 atm, wollastonite 100°C & 39 atm²
 → energy intensive, expensive, difficult to scale

¹ Beach weathering of olivine sand described in "Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability", Hangx, S. J. T.; Spiers, C. J., Int. J. Greenhouse Gas Control 2009, 3 (6), 757–767.

² IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 7: Mineral carbonation and industrial uses of carbon dioxide (2005), p. 319-338

Accelerating Carbon Mineralization

$$(Ca,Mg)SiO_3 + CO_2$$

Carbon

Wollastonite

Olivine

Pyroxene

Silicate Minerals

Dioxide

 $(Ca,Mg)CO_3 + SiO_2$

Carbon-Negative Material Permanent CO₂ storage

- Natural weathering = geological timescales e.g., 700-2100 years for olivine¹
- Accelerated weathering = high temperature & pressure e.g., olivine 185°C & 148 atm, wollastonite 100°C & 39 atm² → energy intensive, expensive, difficult to scale
- ✓ Arrakis Materials Process = fast & low-energy ≤ 2 days at room temperature & pressure

Beach weathering of olivine sand described in "Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability", Hangx, S. J. T.; Spiers, C. J., Int. J. Greenhouse Gas Control 2009, 3 (6), 757-767. ² IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 7: Mineral carbonation and industrial uses of carbon dioxide (2005), p. 319-338

Early Stage

- Founded Fall 2022
- Funded with Grants & Fellowships
- Activate Boston Cohort 2023

- Bench scale experiments focused on increasing the %CO₂ uptake
- Material characterization & process optimization

- Looking for new uses for our carbon-negative minerals
- Let's chat about your needs!

Thank you!

info@arrakismaterials.com

