Basic Statistics for the Clinician

Matthew S. Briggs PT, DPT, PhD, SCS, AT

WEXNER MEDICAL CENTER
OSU Sports Medicine

Disclosure

Nothing to disclose

The Ohio State University
WEXNER MEDICAL CENTER

Why do I need to know statistics...?

People can make up statistics to prove anything! ...14\% OF ALL PEOPLE KNOW THAT

...and for any other reason...

THEY WILL BE ON YOUR SPECIALTY BOARD EXAM!!!

Learning Objectives

- Review basic study design \& levels of evidence common to clinical research
- Review basic applications of hypothesis testing:
- purpose of p-value
- tests for determining difference b/w groups
" (eg. t- test \& ANOVA, etc.)
o tests for determining relationships
- (eg. Correlation analysis, regression, etc.)
- Understand difference between prevalence \& incidence
- Review \& understand results of basic statistical analysis commonly used in clinical diagnostic research:
- Sensitivity, Specificity
- Positive Predictive Value, Negative Predictive Value

Common Clinical Research Design Types Study

 "...how did dey do dat?"- Systematic Reviews/Meta-Analysis
- Focused review and synthesis of results from RCTs
- Randomized Controlled Trial:
- Subject randomized into different groups
- Cohort:
- Examine 2 or more groups over time

- Case Control:
- Patients with condition are matched to a control group
- Cross-Sectional:
- Data is collected at a single point in time (prevalence)
- Case Reports/Case Series:
- Medical histories in one or more patients with condition or treatment

STATISTICS
 THE DISCIPLINE THAT PROVES THE A VERAGE HUMAN HAS ONE TESTICLE

What are these?

- P - value
- T-test
- Analysis of Variance (ANOVA)
- Pearsons Correlation (r)
- Regression (r^{2})

Error?

- Type I: (false '+')

Concluding there IS a difference between groups when there really isn't...

- Type II: (false '-’)

Concluding there is NO difference between groups when there actually is...

Never confuse Type I and II errors again:
Just remember that the Boy Who Cried Wolf caused both Type I \& II errors, in that order.

First everyone believed there was a wolf, when there wasn't. Next they believed there was no wolf, when there was.

Substitute "effect" for "wolf" and you're done.

Kudos to @danolner for the thought. Illustration by Francis Barlow "De pastoris puero et agricolis" (1687). Public Domain. Via wikimedia.org

Significance...? It's all about P for "percentage"

p-value:

- Probability of committing a type I error
- $p=.05$
- 5\% probability that the difference b/w means/groups occurred by chance
- 5\% chance of type I error

How do I know if there is a difference?

Parametric

Non-Parametric

- T-Test:
means of 2 groups
- Analysis of Variance (ANOVA):
means of >2 groups

> Mean-based Group Difference Tests

Related proups
 t-test

Scenario

- Aim 1: To determine the optimal exercise intervention (volitional quad set or electrical stimulation) in improving quad strength 1 week following ACLR.
- H_{1} :
- Aim 2: To characterize the relationship between quad strength and knee effusion following ACLR.
- H_{2} :

Which statistical tests should be used?

Patients s/p

- Dependent Variable: Qa
- Intervention:
- Group A \rightarrow Quad sets
- Group B \rightarrow Electrical Stimulation
- What test would you use to determine if quad strength was different between the groups A \& B following the interventions?

Which statistical tests should be used?

Patients s/CLR...

- Group B \rightarrow Electrical Stimulation
- What test would you use to determine if quad strength was different between groups A, B, males, \& females following the interventions?

Which stöctical tests should be used? Patients sl
\square
-

- Interverm
\circ Group $A \rightarrow$
- Group B \rightarrow Electin
- What test would you use to determinc between quad strength and knee effusion

Pearson's Correlation (r)

Pearson's Correlation (r)

- Direction \& strength of linear relationships
- Not causative

Negative
Positive

$<.70$	$.40-.69$	$.30-.39$	$.20-.29$	$.01-.19$	$.01-.19$	$.20-.29$	$30-.39$	$.40-.69$	$\geq .70$
Very Strong	Strong	Moderate	Weak	None	None	Weak		Strong	Very Strong

Pearson's Correlation (r)

Strong '-" relationships

Strong ' + " relationships

Positive

$<.70$	$.40-.69$	$.30-.39$	$.20-.29$	$.01-.19$	$.01-.19$	$.20-.29$	$30-.39$	$.40-.69$	$\geq .70$
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

Pearson's Correlation (r)

Weak "+" relationship

Negative
Positive

$<.70$	$.40-.69$	$.30-.39$	$.20-.29$	$.01-.19$	$.01-.19$	$.20-.29$	$30-.39$	$.40-.69$	$\geq .70$
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

Pearson's Correlation (r)

Negative
Positive

$<.70$	$.40-.69$	$.30-.39$	$.20-.29$	$.01-.19$	$.01-.19$	$.20-.29$	$30-.39$	$.40-.69$	$\geq .70$
Very Strong	Strong	Moderate	Weak	None	None	Weak		Strong	Very Strong

Scenario

- Aim 3: To predict the contribution of quad strength to IKDC score following ACLR.
- H_{3} :

Linear Regression (r^{2})

Predict the value of a dependent variable (outcome \rightarrow IKDC Score) based on the value of at least one independent variable (predictor \rightarrow Quad Strength)

y

- Explain the impact of changes in an independent variable on the dependent variable

Regression line summarizes relationship
between explanatory, x, \& response variable, y
predict value of y for a given value of x
$r \& r^{2}$ (How much explanation of variance?)

What are these?

- P - value
- T-test
- ANOVA
- Pearsons Correlation
- Regression

Have you had enough yet...?

Diagnostic Testing....oh boy...

SnNOut: High Sensitivity, Negative test, Rule out Condition SpPIn: High specificity, Positive test, Rule In condition

		Condition			
	Positive	Negative			
Test Outcome	Positive	True Positive	False Positive	PPV TP/(TP+FP)	
	Negative	False Negative	True Negative	NPV TN/(FN+TN)	
	Sensitivity TP/(TP+FN)				
Specificity TN/(FP+TN)					

SnNOut: High Sensitivity, Negative test, Rule out Condition SpPIn: High specificity, Positive test, Rule In condition

		ACL Tear			
		Positive	Negative		
Lachman	Positive	24	14	PPV $24 /(24+14)$	
	Negative	6	56	NPV $56 /(6+56)$	
			Sensitivity $24 /(24+6)$	Specificity $56 /(14+56)$	Total = 100

Example

- Population/Sample: 100
- Torn ACL: 30
- Prevalence: 30/100=30\%

How much is what...?

- Prevalence:
- how much of condition is in population at a particular point in time
- 30 case in a sample of 100
- 30/100= 0.30
- $0.30 \times 100=30 \%$
o \% or \# cases per 100,000

\% of Obesity* Among U.S. Adults BRFSS, 1990, 1999, 2009

(*BMI ≥ 30, or about 30 lbs . overweight for $5^{\prime} 4$ " person)

\square
No Data $\square<10 \% \quad$ 10\%-14\% $\square 15 \%-19 \% \quad \square 20 \%-24 \% \quad \square 25 \%-29 \% \quad \square \geq 30 \%$

How much is what...?

- Incidence:
o Rate (in month/year/etc.) of occurrence of new cases of a disease or condition
o (\# new cases (over time course) / total population)
o \# cases per 100,000

ACL injury

B

Sensitivity

- How good a test is at correctly identifying people who have a "disease/condition"
- "...test's ability to identify positive results."
o 24 out of $30 \rightarrow[24 /(24+6)]=0.80$

Specificity

- How good a test is at correctly identifying people who are well
- "...ability of the test to identify negative results."
- 56 out of $70 \rightarrow[56 /(14+56)]=0.80$

100\% Sensitivity

- "...test's ability to identify positive results."
$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \bullet & 0 & 0 \\ \bullet & 0 & 0 & 0 \\ \bullet & 0\end{array}\right]$

Perfect Test

$$
\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Positive Predictive Value

- The chance that a positive test result will be correct.
- 24 out of 38 positive tests correct: [24/(24+14)]= 0.63

Negative Predictive Value

- The chance that a negative test result will be correct
- 56 out of 62 neg. results correct: [56/(6+56)]= 0.90

0	0	0	0	0	0	0
0	0	0	0	0	0	0

Ottawa Ankle Rules example...

- Sensitivity ~100\%
- Specificity: 48\%
" PPV: 15\%
- NPV: ~100\%

What is the Likelihood Ratio (LR)

The probability of a clinical finding in patients with a condition divided by the probability of the same finding in patients without the condition

Direct estimate of how much a test result will change the odds of having a disease/condition.

Likelihood of a disorder or condition being present

"Probability estimate of presence/absence of the condition of interest"

- LR+ tells you how much the odds of the condition increase when a test is positive.
- LR- tells you how much the odds of the condition decrease when a test is negative.

LR -			LR+			
$0-.1$	$.1-.2$	$.2-.5$	$.5-2$	$2-5$	$5-10$	>10
Important	Unimportant			Important		

Likelihood Ratios

		Condition						
		+	-					
Test	+	True Positive	False Positive	PPV				
	-	False Negative	True Negative					
	Sensitivity						Specificity	Total

LR $+=\frac{\operatorname{Pr}(\mathrm{T}+\mid \mathrm{D}+)}{\operatorname{Pr}(\mathrm{T}+\mid \mathrm{D}-)}=\frac{\text { True Positive }}{\text { False Positive }}=\frac{\text { sensitivity }}{1-\text { specificity }}$

LR- $=\frac{\operatorname{Pr}(\mathrm{T}-\mid \mathrm{D}+)}{\operatorname{Pr}(\mathrm{T}-\mid \mathrm{D}-)}=\frac{\text { False Negative }}{\text { True Negative }}=\frac{1-\text { sensitivity }}{\text { specificity }}$

		ACL Tear			
	Positive	Negative			
Lachman	Positive	24	14	PPV $24 /(24+14)$	
	Negative	6	56	NPV $56 /(6+56)$	
			Sensitivity $24 /(24+6)$	Specificity $56 /(14+56)$	

0

			Actual ACL Tear		
			Positive	Negative	
	Anterior Drawer	Positive	24	14	PPV $24 /(24+14)$
		Negative	6	56	$\begin{gathered} \text { NPV } \\ 56 /(6+56) \end{gathered}$
	Total		30	70	
			Sensitivity $24 /(24+6)=0.80$	Specificity $56 /(14+56)^{`}$	

What is the proportion of patients with an ACL tear who have a " + " Lachman?

$$
\text { [24/(24+6)] = } 0.80 \text { (sensitivity) }
$$

In other words, a "+" Lachman is 4x's more likely in a patient who has an ACL tear than a patient who does not have an ACL tear AND

			Actual ACL Tear		
			Positive	Negative	
	Anterior Drawer	Positive	24	14	$\begin{gathered} \text { PPV } \\ 24 /(24+14) \\ \hline \end{gathered}$
		Negative	6	56	$\begin{gathered} \text { NPV } \\ 56 /(6+56) \end{gathered}$
	Total		30	70	
			Sensitivity $24 /(24+6)=0.80$	Specificity $56 /(14+56)$	

What is the proportion of patients with an ACL tear who have a "+" Lachman?
$[24 /(24+6)]=0.80$ (sensitivity)
What is the proportion of patients without an ACL tear who have a "- " Lachman? $[56 /(14+56)]=0.80$ (specificity)

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

		Actual ACL Tear			
		Negative			
Anterior Drawer	Positive	24	14	PPV $24 /(24+14)$	
	Negative	6	56	NPV $56 /(6+56)$	
	Total		30	70	
Sensitivity $24 /(24+6)=0.80$		Specificity $56 /(14+56)^{\circ}$			

What is the proportion of patients with an ACL tear who have a "+" Lachman?
[24/(24+6)] = 0.80 (sensitivity)
What is the proportion of patients without an ACL tear who have a "- "Lachman?
$[56 /(14+56)]=0.80$ (specificity)
What is the proportion of patients with a "+" Lachman have an ACL tear?

What is the proportion of patients with an ACL tear who have a "+" Lachman?
$[24 /(24+6)]=0.80$ (sensitivity)
What is the proportion of patients without an ACL tear who have a "- " Lachman?
$[56 /(14+56)]=0.80$ (specificity)
What is the proportion of patients with a "+" Lachman have an ACL tear?
$[24 /(24+14)]=0.63 \%$ (PPV)
What is the proportion of patients with a "-" Lachman who don't have an ACL tear:

In other words, a "+" La

jes not have an ACL tear

Jhio State University

			Actual ACL Tear		PPV$24 /(24+14)$
			Positive	Negative	
	Anterior Drawer	Positive	24	14	
		Negative	6	56	$\begin{gathered} \text { NPV } \\ \text { 56/(6+56) } \end{gathered}$
	Total		30	70	
			Sensitivity $24 /(24+6)=0.80$	Specificity $56 /(14+56)$	

What is the proportion of patients with an ACL tear who have a "+" Lachman?
$[24 /(24+6)]=0.80$ (sensitivity)
What is the proportion of patients without an ACL tear who have a "- "Lachman?
$[56 /(14+56)]=0.80$ (specificity)
What is the proportion of patients with a "+" Lachman have an ACL tear?
$[24 /(24+14)]=0.63 \%$ (PPV)
What is the proportion of patients with a "-" Lachman who don't have an ACL tear? $[56 /(6+56)]=0.90$ NPV
If the Lachman's is " + ", what are the odds favoring an ACL tear?

$$
+ \text { LR }=\text { sensitivity/(1-specificity) }=.0 .80 / 0.20=4
$$

If the Lachman's "_" what are the odds favoring an ACL tear?

- LR $=(1$-sensitivity $) /$ specificity $=.20 / .80=.25$

In other words, a "+" Lachman is $4 x$'s more likely in a patient who has an ACL tear than a patient who does not have an ACL tear AND

			Actual ACL Tear		PPV$24 /(24+14)$
			Positive	Negative	
	Anterior Drawer	Positive	24	14	
		Negative	6	56	$\begin{gathered} \text { NPV } \\ 56 /(6+56) \end{gathered}$
	Total		30	70	
			Sensitivity $24 /(24+6)=0.80$	Specificity 56/(14+56)`	

What is the proportion of patients with an ACL tear who have a "+" Lachman?
[24/(24+6)] = 0.80 (sensitivity)
What is the proportion of patients without an ACL tear who have a "- " Lachman?
$[56 /(14+56)]=0.80$ (specificity)
What is the proportion of patients with a "+" Lachman have an ACL tear?
$[24 /(24+14)]=0.63 \%$ (PPV)
What is the proportion of patients with a "-" Lachman who don't have an ACL tear?
$[56 /(6+56)]=0.90$ NPV
If the Lachman's is "+", what are the odds favoring an ACL tear?
+LR $=$ sensitivity/(1-specificity) $=.0 .80 / 0.20=4$

If the Lachman's "-" what are the odds favoring an ACL tear?

$$
\text { -LR }=(1 \text {-sensitivity)/specificity }=.20 / .80=.25
$$

In other words, a "+" Lachman is $4 x$'s more likely in a patient who has an ACL tear than a patient who does not have an ACL tear

			Actual ACL Tear		
			Positive	Negative	
	Anterior Drawer	Positive	24	14	PPV $24 /(24+14)$
		Negative	6	56	$\begin{gathered} \text { NPV } \\ 56 /(6+56) \end{gathered}$
	Total		30	70	
			Sensitivity $24 /(24+6)=0.80$	Specificity $56 /(14+56)^{`}$	

What is the proportion of patients with an ACL tear who have a "+" Lachman?
$[24 /(24+6)]=0.80$ (sensitivity)
What is the proportion of patients without an ACL tear who have a "- "Lachman?
$[56 /(14+56)]=0.80$ (specificity)
What is the proportion of patients with a "+" Lachman have an ACL tear?
$[24 /(24+14)]=0.63 \%$ (PPV)
What is the proportion of patients with a "-" Lachman who don't have an ACL tear?
[56/(6+56)] $=0.90$ NPV
If the Lachman's is "+", what are the odds favoring an ACL tear?

$$
\text { +LR = sensitivity/(1-specificity) }=.0 .80 / 0.20=4
$$

If the Lachman's "-" what are the odds favoring an ACL tear?

- LR $=(1$-sensitivity $) /$ specificity $=.20 / .80=.25$

In other words, a "+" Lachman is $4 x$'s more likely in a patient who has an ACL tear than
patient who does not have an ACL tear

AND

A"-" Lachman is only $1 / 4(0.25)$ more likely in those who have an ACL tear.

0
The Ohio State University
WEXNER MEDICAL CENTER

The Ohio State University

 WEXNER MEDICAL CENTEROSU Sports Medicine
sportsmedicine.osu.edu

