Basic Statistics for the Clinician

Matthew S. Briggs PT, DPT, PhD, SCS, AT

THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

OSU Sports Medicine

Disclosure

Nothing to disclose

OSU Sports Medicine

2

Why do I need to know statistics...?

60 percent of the time it works every time ...

...14% OF ALL PEOPLE KNOW THAT

THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

...and for any other reason...

THEY WILL BE ON YOUR SPECIALTY BOARD EXAM!!!

Learning Objectives

- Review basic study design & levels of evidence common to clinical research
- Review basic applications of hypothesis testing:
 - purpose of *p*-value
 - tests for determining difference b/w groups

(eg. t- test & ANOVA, etc.)

- o tests for determining relationships
 - (eg. Correlation analysis, regression, etc.)
- Understand difference between prevalence & incidence
- Review & understand results of basic statistical analysis commonly used in clinical diagnostic research:
 - Sensitivity, Specificity
 - Positive Predictive Value, Negative Predictive Value

Common Clinical Research Design Types Study "...how did dey do dat?"

- Systematic Reviews/Meta-Analysis
 - Focused review and synthesis of results from RCTs
- Randomized Controlled Trial:
 - Subject randomized into different groups
- Cohort:
 - Examine 2 or more groups over time
- Case Control:
 - Patients with condition are matched to a control group
- Cross-Sectional:
 - Data is collected at a single point in time (prevalence)
- Case Reports/Case Series:
 - Medical histories in one or more patients with condition or treatment

What are these?

- P value
- T-test
- Analysis of Variance (ANOVA)
- Pearsons Correlation (r)
- Regression (r²)

Error?

 Type I: (false '+')
 Concluding there IS a difference between groups when there really isn't...

Type II: (false '-')

Concluding there is **NO** difference between groups when there actually is...

Never confuse Type I and II errors again:

Just remember that the Boy Who Cried Wolf caused both Type I & II errors, in that order.

First everyone believed there was a wolf, when there wasn't. Next they believed there was no wolf, when there was.

Substitute "effect" for "wolf" and you're done.

Kudos to @danolner for the thought. Illustration by Francis Barlow "De pastoris puero et agricolis" (1687). Public Domain. Via wikimedia.org

Significance...? It's all about P for "percentage"

p-value:

- Probability of committing a type I error
- *p*=.05
 - 5% probability that the difference b/w means/groups occurred by chance
 - 5% chance of type I error

Roll a 20-sided die and you'll notice that any given number comes up pretty often!

Scenario

- Aim 1: To determine the optimal exercise intervention (volitional quad set or electrical stimulation) in improving quad strength 1 week following ACLR.
 O H₁:
- Aim 2: To characterize the relationship between quad strength and knee effusion following ACLR.
 O H₂:

Which statistical tests should be used?

- Dependent Variable: 🕰
- Intervention:

Patients s/p

- **Group** $A \rightarrow$ Quad sets \bigcirc
- **Group B** \rightarrow Electrical Stimulation \bigcirc
- What test would you use to determine if quad strength was different between the groups A & B following the interventions?

THE OHIO STATE UNIVERSITY

Which statistical tests should be used?

WEXNER MEDICAL CENTER

RSITY

- Direction & strength of linear <u>relationships</u>
- Not causative

		Negative					Positive		
< .70	.4069	.3039	.2029	.0119	.0119	.2029	3039	.4069	<u>≥</u> .70
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

		Negative					Positive		
< .70	.4069	.3039	.2029	.0119	.0119	.2029	3039	.4069	<u>≥</u> .70
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

		Negative					Positive		
< .70	.4069	.3039	.2029	.0119	.0119	.2029	3039	.4069	<u>≥</u> .70
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

Negative				Positive					
< .70	.4069	.3039	.2029	.0119	.0119	.2029	3039	.4069	<u>≥</u> .70
Very Strong	Strong	Moderate	Weak	None	None	Weak	Moderate	Strong	Very Strong

Scenario

 Aim 3: To predict the contribution of quad strength to IKDC score following ACLR.
 O H₃:

Linear Regression (r²)

<u>**Predict</u>** the value of a dependent variable (*outcome* \rightarrow *IKDC Score*) based on the value of at least one independent variable (*predictor* \rightarrow *Quad Strength*)</u>

 Explain the impact of changes in an independent variable on the dependent variable

<u>Regression line</u> summarizes relationship between explanatory, x, & response variable, y predict value of y for a given value of x

r & r² (How much explanation of variance?)

What are these?

- P value
- T-test
- ANOVA
- Pearsons Correlation
- Regression

Have you had enough yet...?

Diagnostic Testing....oh boy...

	Reference	Standard Positive	Reference Standard I	Negative			
Diagnostic Test Positive	True +	- Results a	False + Results	b			
Diagnostic Test Negativ	e False	- Results c	True - Results	d			
Statistic	Formula		Description				
Overall Accuracy	(a+d)/(a+b+c+d)	Percentage of patients who are correctly diagnosed					
Sensitivity	a/(a+c)	Proportion of patients with the condition who have a + test result					
Specificity	d/(b+d)	Proportion of patients without the condition who have a - test result					
Positive Predictive Value	a/(a+b)	Proportion of patients	with a + test result who have t	the condition			
Negative Predictive Value	d/(c+d)	Proportion of patients with a - test result who don't have the d/(c+d) condition					
Positive Likelihood Ratio	Sensitivity/1- Specificity)	If the test is +, the increase in odds favoring the condition					
Negative Likelihood Ratio	(1- Sensitivity)/Specificity	If the test is -, the decrease in odds favoring the condition					

SnNOut: High Sensitivity, Negative test, Rule out Condition SpPIn: High specificity, Positive test, Rule In condition

		Con		
		Positive Negative		
Test	Positive	True Positive	False Positive	PPV TP/(TP+FP)
Outcome	Negative	False Negative	True Negative	NPV TN/(FN+TN)
		Sensitivity TP/(TP+FN)	Specificity TN/(FP+TN)	

SnNOut: High Sensitivity, Negative test, Rule out Condition SpPIn: High specificity, Positive test, Rule In condition

		ACL		
		Positive	Negative	
Lashman	Positive	24	14	PPV 24 /(24+14)
Lachman	Negative	6	56	NPV 56/(6+56)
		Sensitivity 24/(24+6)	Specificity 56/(14+56)	Total = 100

Example

- Population/Sample: 100
- Torn ACL: 30
- Prevalence: 30/100= 30%

How much is what...?

Prevalence:

- how much of condition is in population at a particular point in time
- 30 case in a sample of 100
 - **30/100= 0.30**
 - 0.30 x 100 = 30%
- o % or # cases per 100,000

% of Obesity* Among U.S. Adults BRFSS, 1990, 1999, 2009

(*BMI ≥30, or about 30 lbs. overweight for 5'4" person)

How much is what...?

Incidence:

- Rate (in month/year/etc.) of occurrence of <u>new</u> <u>cases</u> of a disease or condition
- (# new cases (over time course) / total population)
 # cases per 100,000

ACL injury

В

THE OHIO STATE UNIVERSITY

Sensitivity

- How good a test is at correctly identifying people who have a "disease/condition"
- *"…test's ability to identify positive results."* 24 out of 30 → [24/(24+6)]=0.80

Specificity

- How good a test is at correctly identifying people who are well
- *"…ability of the test to identify negative results."* <u>56 out of 70 → [56/(14+56)]=0.80</u>

100% Sensitivity

"...test's ability to identify positive results."

Perfect Test

WEXNER MEDICAL CENTER

Positive Predictive Value

- The chance that a positive test result will be correct.
- 24 out of 38 positive tests correct: [24/(24+14)]= 0.63

Negative Predictive Value

- The chance that a negative test result will be correct
- 56 out of 62 neg. results correct: [56/(6+56)]= 0.90

Ottawa Ankle Rules example...

- Sensitivity ~100%
- Specificity: 48%
- **PPV: 15%**
- NPV: ~100%

What is the Likelihood Ratio (LR)

The probability of a clinical finding in patients with a condition divided by the probability of the same finding in patients without the condition

Direct estimate of how much a test result will change the odds of having a disease/condition.

Likelihood of a disorder or condition being present

Increased diagnostic confidence:

"Probability estimate of presence/absence of the condition of interest"

- LR+ tells you how much the odds of the condition increase when a test is positive.
- LR- tells you how much the odds of the condition decrease when a test is negative.

	LR -			LR+			
01	.12	.25	.5 - 2	2 - 5	5 - 10	>10	
Important Unimp				ant	Impo	ortant	
			_				

Likelihood Ratios

			Conc	lition		
			+	-		
	Test	+	True Positive	False Positive	PPV	
	Test	-	False Negative	True Negative	NPV	
			Sensitivity	Specificity	Total	
LR+ =	Pr(T+ D+)		Tru	le Positive	Se	ensitivity
	Pr(T+ D-)		Fals	se Positive	 1-s	pecificity
LR- =	Pr(T-	D+)	Fals	se Negative	<u>e 1-s</u>	ensitivity
	Pr(T-	D-)	Tru	e Negative	sp	pecificity

		ACL	Tear	
		Positive	Negative	
Lachman	Positive	24	14	PPV 24 /(24+14)
	Negative	6	56	NPV 56/(6+56)
		Sensitivity 24/(24+6)	Specificity 56/(14+56)	

•	•	:	:	:	:	:	:	:	:
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0000000000			Actual /	ACL Tear	
<mark>00</mark> 00000000		Ţ	Positive	Negative	
	Anterior	Positive	24	14	PPV 24 /(24+14)
	Drawer	Negative	6	56	NPV 56/(6+56)
• • • • • • • • •	Total		30	70	
			Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

[24/(24+6)] = 0.80 (sensitivity)

In other words, a "+" Lachman is 4x's more likely in a patient who has an ACL tear than a patient who does not have an ACL tear

A "-" Lachman is only $\frac{1}{4}$ (0.25) more likely in those who have an AQ

THE OHIO STATE UNIVERSITY

2	0000000000			Actual A	ACL Tear	
	<mark>00</mark> 00000000			Positive	Negative	
		Anterior	Positive	24	14	PPV 24 /(24+14)
		Drawer	Negative	6	56	NPV 56/(6+56)
	•••••	Total		30	70	
				Sensitivity 24/(24+6) = 0.80	Specificity 56/(14+56)`	

[24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman?

[56/(14+56)] = 0.80 (specificity)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	•	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

		Actual A	ACL Tear	
		Positive	Negative	
Anterior	Positive	24	14	PPV 24 /(24+14)
Drawer	Negative	6	56	NPV 56/(6+56)
Total		30	70	
		Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

[24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman?

[56/(14+56)] = 0.80 (specificity)

What is the proportion of patients with a "+" Lachman have an ACL tear?

•	•	•	~	•	•	•	•	•	•
	_	0 0	_	_	_	_	_	-	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

		Actual A	ACL Tear	
		Positive	Negative	
Anterior	Positive	24	14	PPV 24 /(24+14)
Drawer	Negative	6	56	NPV 56/(6+56)
Total		30	70	
		Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

[24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman?

[56/(14+56)] = 0.80 (specificity)

What is the proportion of patients with a "+" Lachman have an ACL tear?

[24/(24+14)]=0.63% (PPV)

What is the proportion of patients with a "-" Lachman who don't have an ACL tear?

•	•	•	•	•	•	•	•	•	•
:	:	:	:	:	-	:	:	:	:
0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

		Actual A	ACL Tear	
		Positive	Negative	
Anterior	Positive	24	14	PPV 24 /(24+14)
Drawer	Negative	6	56	NPV 56/(6+56)
Total		30	70	
		Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

What is the proportion of patients with an ACL tear who have a "+" Lachman? [24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman? [56/(14+56)] = 0.80 (specificity)

What is the proportion of patients with a "+" Lachman have an ACL tear? [24/(24+14)]=0.63% (PPV)

What is the proportion of patients with a "-" Lachman who don't have an ACL tear? [56/(6+56)] = 0.90 NPV

If the Lachman's is "+", what are the odds favoring an ACL tear? +LR = sensitivity/(1-specificity) = .0.80/0.20 = 4

If the Lachman's "-" what are the odds favoring an ACL tear?

-LR = (1-sensitivity)/specificity = .20/.80 = .25

In other words, a "+" Lachman is 4x's more likely in a patient who has an ACL tear than a patient who does not have an ACL tear

AND

A "-" Lachman is only 1/4 (0.25) more likely in those who have an AC

•	•	•			•	•	•	•	•
•	:	:	:	:	-	:	:	:	:
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

		Actual A		
		Positive	Negative	
Anterior	Positive	24	14	PPV 24 /(24+14)
Drawer	Negative	6	56	NPV 56/(6+56)
Total		30	70	
		Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

What is the proportion of patients with an ACL tear who have a "+" Lachman? [24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman? [56/(14+56)] = 0.80 (specificity)

What is the proportion of patients with a "+" Lachman have an ACL tear? [24/(24+14)]=0.63% (PPV)

What is the proportion of patients with a "-" Lachman who don't have an ACL tear? [56/(6+56)] = 0.90 NPV

If the Lachman's is "+", what are the odds favoring an ACL tear?

+LR = sensitivity/(1-specificity) = .0.80/0.20 = 4

If the Lachman's "-" what are the odds favoring an ACL tear? -LR = (1-sensitivity)/specificity = .20/.80 = .25

In other words, a "+" Lachman is 4x's more likely in a patient who has an ACL tear than a patient who does not have an ACL tear

AND

A "-" Lachman is only 1/4 (0.25) more likely in those who have an A

•	•	•	•	•	•	•	•	•	•
•	•	٠	٠	٠	٠	٠	٠	٠	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

		Actual A		
		Positive	Negative	
Anterior	Positive	24	14	PPV 24 /(24+14)
Drawer	Negative	6	56	NPV 56/(6+56)
Total		30	70	
		Sensitivity 24/(24+6) = 0.80	Specificity 56/(14 +56)`	

What is the proportion of patients with an ACL tear who have a "+" Lachman? [24/(24+6)] = 0.80 (sensitivity)

What is the proportion of patients without an ACL tear who have a "- " Lachman? [56/(14+56)] = 0.80 (specificity)

What is the proportion of patients with a "+" Lachman have an ACL tear? $\label{eq:24/(24+14)]=0.63\%} (\text{PPV})$

What is the proportion of patients with a "-" Lachman who don't have an ACL tear? [56/(6+56)] = 0.90 NPV

If the Lachman's is "+", what are the odds favoring an ACL tear?

+LR = sensitivity/(1-specificity) = .0.80/0.20 = 4

If the Lachman's "-" what are the odds favoring an ACL tear?

-LR = (1-sensitivity)/specificity = .20/.80 = .25

In other words, a "+" Lachman is **4x's** more likely in a patient who has an ACL tear than a patient who does not have an ACL tear AND

A "-" Lachman is only 1/4 (0.25) more likely in those who have an ACL tear.

The Ohio State University

WEXNER MEDICAL CENTER

OSU Sports Medicine

sportsmedicine.osu.edu

OSU Sports Medicine