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BACKGROUND AND OBJECTIVE: 

Dental implants have revolutionized oral healthcare for decades, yet the specter 

of peri-implantitis continues to cast a shadow on their long-term success. Despite 

significant research efforts dedicated to surface modifications aimed at enhancing 

osseointegration, the critical role of the "biological seal" formed by soft tissue 

around the implant often remains overlooked. This multi-functional barrier guard 

the implant-bone interface from pathogenic invasion, and restricts the apical 

progression of marginal inflammation, ultimately preventing peri-implantitis. 

However, the current approaches to dental implant soft tissue integration target 

isolated aspects of implant healing, neglecting the interconnectedness of key 

phases like fibroblast adhesion, proliferation, and soft tissue attachment while 

simultaneously preventing microbial growth. This fragmented approach hampers 

the development of a truly comprehensive and optimized healing strategy.  

Therefore, this study aims to fabricate a tissue-engineered scaffold that may be 

easily replicated over the neck of a dental implant and/or abutment, to provide 

optimal conditions for healing at the implant-soft tissue with enhanced soft tissue 

integration, and anti-bacterial colonization to provide biologically stable implants. 

 
MATERIALS AND METHODS: 

A polymer solution containing Gelatin (20 wt.%) embedded with 5-10nm Copper 

nanoparticles (20 % wt./v of Gelatin) and hyaluronic acid (3 wt.%) in the ratio of 

6:4 was electrospun onto polydopamine-coated Titanium alloy disc to form a 

Gelatin-Hyaluronic acid-Polydopamine-copper nanoparticles 

(GE/HA/PDA/CuNPs) mat scaffold. The microstructure, morphology, fiber 

diameter, nanoparticle(s) distribution, composition, and wettability were studied 
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through SEM, EDS, FTIR, and Contact angle analysis. The antimicrobial activity 

of the CuNPs-impregnated scaffolds was evaluated against representative 

samples of Gram-negative (Pseudomonas aeruginosa) and Gram-positive 

(Staphylococcus aureus) bacteria by disc diffusion and broth microdilution 

methods. Cytotoxicity analysis (MTT assay) and cell proliferation were assessed 

at 24 and 72 hours for three groups: control (Gingival fibroblasts cultured alone), 

Ti-coated  (GE/HA/PDA/CuNPs scaffold coated Ti-alloy discs); and  Ti un-coated 

Ti alloy discs. 

 
RESULTS: 

SEM revealed a well-defined porous morphology with an average fiber diameter 

of 280 ± 60 nm in the electrospun GE/HA/CuNPs nanofibers. EDS confirmed the 

presence and uniform distribution of CuNPs throughout the scaffold. FTIR verified 

the successful incorporation and integrity of all constituent materials; Gelatin , 

hyaluronic acid, Polydopamine, and copper nanoparticles as confirmed by the 

spectral peaks observed. Contact angle analysis revealed a reduced contact 

angle for GE/HA/PDA/CuNPs modified Ti disc showing enhanced cell adhesion 

properties of the scaffold. The GE/HA/PDA/CuNPs scaffold exhibited significant 

antimicrobial activity against both Gram-negative (P. aeruginosa) and Gram-

positive (S. aureus) bacteria. Cell viability and proliferation over the 

GE/HA/PDA/CuNPs modified Ti discs were seen to be significantly increased (P 

< 0.05) at 72 hours as compared with the unmodified Ti disc. 

 
Conclusion:  

The study findings highlight the promise of the novel bioengineered scaffold as a 

comprehensive strategy, for simultaneously modulating early cell adhesion and 
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proliferation while enhancing antimicrobial/antibiofilm properties on titanium 

dental implants, ultimately promoting effective soft tissue healing on the implant 

surface. Further investigations are warranted to explore the long-term stability 

and in vivo performance of these scaffolds for their potential translation to clinical 

practice and improved patient outcomes. 

 

Keywords: Dental implants, peri-implantitis, biological seal, soft tissue 

attachment, surface modification, nanofibers, tissue engineering, nanofiber 

scaffold, electrospinning. 
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Dental implants constitute the current gold standard treatment for the 

rehabilitation of missing teeth, providing patients with an improved oral health-

related quality of life with long-term functional outcomes.[1] In the preceding 

decades, there has been a marked surge in the application of Titanium implants 

as the preferred therapeutic modality in addressing partial or complete 

edentulism, with an estimated one million dental implant procedures conducted 

annually.[2] Projections indicate a prospective increase in the adoption of dental 

implants, with an anticipated expansion to encompass as much as 23% of the 

global population. [3] 

 

Nevertheless, despite the revolutionization of dental rehabilitation by 

osseointegrated implants, offering significant functional and aesthetic 

improvements, a looming shadow has emerged in the form of escalating peri-

implant diseases, particularly peri-implantitis. These inflammatory conditions 

jeopardize the long-term success and patient well-being associated with implant 

supported rehabilitation, despite demonstrably high initial success rates. This 

growing burden of peri-implant diseases presents a significant challenge, 

demanding a deeper understanding of their etiology and novel approaches for 

prevention and treatment. [4,5] 

 

The inflammation-associated lesions that arise in the tissues surrounding 

implants are commonly referred to as Peri-implant diseases [6]. Within the 

spectrum of severity of peri-implant diseases, a classification reflective of 

periodontal conditions in natural dentition delineates two discrete categories: peri-

implant mucositis, equivalent to gingivitis, and peri-implantitis, analogous to  
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periodontitis. [6, 7] Peri-implant mucositis is delineated as a reversible inflammatory 

response occurring in the soft tissues surrounding a functional implant. Peri-

implantitis, in contrast to peri-implant mucositis, is characterized by inflammation 

extending beyond the soft tissues to involve the deeper connective tissues 

surrounding the osseointegrated implant. This progressive inflammation triggers 

a gradual resorption of the supporting bone, potentially leading to implant failure if 

left untreated. [8, 9]  

 

The prevailing model for peri-implant diseases posits a sequential progression 

akin to the well-established gingivitis-periodontitis paradigm in natural teeth. This 

model proposes that peri-implant mucositis, confined to the soft tissue around the 

implant, precedes the development of more severe peri-implantitis, characterized 

by inflammation extending to the underlying bone and connective tissue. [10] 

Hence, the pivotal strategy for averting peri-implant diseases lies in the effective 

prevention of peri-implant mucositis and its subsequent progression to more 

advanced stages of the pathological continuum, culminating in the outcome of 

implant failure. [11]  

 

This underscores the importance of the peri-implant mucosal region, as it plays a 

vital role in establishing a strong physiological and biological barricade against 

the external environment, effectively impeding the ingress of bacterial plaque and 

safeguarding the integrity of the implant-site interface. This protective mechanism 

is achieved through the attachment of epithelial and connective tissues, 

effectively shielding the implant and underlying bone from the oral environment. 

[12, 13] 
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The absence of a periodontal ligament at the implant-gingival interface, a key 

distinction from natural tooth structure, contributes to compromised biological 

properties, particularly manifested in inadequate and potentially dysfunctional soft 

tissue attachment.[14] Moreover, the epithelial attachment structure, comprised of 

the basal lamina and hemidesmosomes, is localized predominantly in the apical 

third of the Peri-Implant Epithelium (PIE), diminishing its resilience and structural 

integrity, thereby rendering it vulnerable to bacterial infiltration. [12, 14, 15, 16, 17]  

Additionally, in instances of delayed or improper attachment, opportunistic 

bacteria have the potential to infiltrate the interstitial space between the implant 

and gingival mucosa, thereby precipitating peri-implant infections [16, 17, 18] 

 

Thus, there exists a critical need to overcome the limitation of inadequate soft 

tissue integration, which impedes the successful replication of the physiological 

milieu surrounding natural teeth.  

 

Recent research endeavors have unveiled that the physicochemical attributes of 

implant materials play a pivotal role in shaping the soft tissue responses at the 

interface, exerting a considerable impact on the efficacy and quality of soft tissue 

seals. [19, 20] Diverse techniques have been explored for the modification of 

implant surfaces, encompassing physical, chemical, and biological 

methodologies. These targeted interventions seek to optimize the titanium (Ti) 

surface, thereby facilitating enhanced cellular adhesion and proliferation, 

culminating in improved soft tissue integration. [20] 
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Functionally-tailored biopolymers designed to mimic the native extracellular 

matrix: extracellular matrix (ECM) offer promising potential as surface coatings 

for metal implants. These constructs, applied directly to the metallic surface, can 

mimic the microenvironment surrounding biological entities, potentially promoting 

targeted cellular reactions that promote healing at the site of injury, ultimately 

resulting in an improved soft-tissue response. [21] 

 

Polydopamine (PDA), representing the ultimate oxidation product of dopamine or 

other catecholamines, has emerged as a focal point for biomaterial modification 

due its notable capability to bind strongly to a wide array of substrates and offer 

secondary reactivity for biomolecule conjugation. [22, 23]  

The polydopamine coating strategy has the potential to facilitate cell attachment 

and proliferation, thereby offering an additional dimension to augment cellular 

interactions on implant surface with good hydrophilicity, surface topography, 

structural integrity, biocompatibility, antimicrobial activity, cellular adhesion, and 

enhanced bone regeneration. [24,25,26,27,28]. Beyond promoting improved soft tissue 

response, the adhesive properties exhibited by PDA suggest its potential as a 

versatile intermediate layer to facilitate the integration of diverse functional 

materials, such as nanoparticles for targeted drug delivery, peptides for 

modulating cellular responses, growth factors, and hydrogels, involved in both 

soft tissue and bone remodeling. This ability to integrate materials enables the 

creation of "dual modifications," offering synergistic effects for tissue 

regeneration. [29] 

Gelatin incorporates the arginine–glycine–aspartic acid (RGD) sequence, a motif 

known to augment cell adhesion by interacting with integrin.[30] This biopolymer 
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effectively mimics RGD bio-signaling, creating a conducive site for cell 

attachment while inducing diverse cellular responses, including the facilitation of 

cellular proliferation, differentiation, and migration. Additionally, it promotes cell 

adhesion, spreading, and activation.[31,32] 

Hyaluronic acid (HA), a naturally occurring polysaccharide found throughout the 

human body, is a critical component of the ECM. [34,35] HA significantly contributes 

to modulating the initial phases of inflammation and serves as an effective 

scavenger of reactive oxygen species.[36] Its multifaceted properties extend 

beyond its anti-inflammatory functions, encompassing bacteriostasis[37,38] and the 

alleviation of pain and swelling[39]. Additionally, HA acts as a cellular modulator, 

influencing diverse biological responses such as angiogenesis, cell adhesion, 

proliferation, and differentiation through interactions with surface receptors on 

target cells.[40,41,42] 

 

The long-term success of dental implants is also intricately linked to a competitive 

process known as the "race for the surface." This dynamic interplay involves a 

race between tissue integration and bacterial colonization, both vying for 

dominance on the implant surface.[43] Successful tissue integration around the 

implant results in its encapsulation by native host cells, thereby minimizing the 

susceptibility to infection. Conversely, if bacterial growth prevails, the likelihood of 

infection, potentially leading to peri-implantitis, is significantly heightened. [43, 44] 

Hence, the optimal approach to address peri-implantitis involves preventing 

biofilm formation on the implant material and creating an environment conducive 

to the proliferation of native cells. [44] While systemic antibiotics are frequently 

employed for this purpose in practice, the associated risks of systemic toxicity 
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and microbial resistance have prompted the exploration of alternatives, including 

antimicrobial metal nanoparticles. [45] 

 

Several metal ions, including Cu2+, Ag+, and Zn2+, are recognized for their 

antibacterial properties, presenting the possibility of deposition onto implant 

surfaces. [46] Nonetheless, the reduced toxicity, enhanced cytocompatibility, and 

the capability for metabolic processing within the body make copper a favorable 

option for deposition on implant surfaces.[47] Additionally, copper exhibits inherent 

antimicrobial properties, contributing to effective biofilm control by acting on 

dispersed bacteria.[47,48] 

 

Thus, it can be hypothesized that the use of three-dimensional porous scaffold 

matrices fabricated from various biocompatible polymers possessing tailored 

properties, including cell migration, proliferation, and inherent anti-inflammatory 

and antimicrobial functionalities, could offer a strategic advantage in preventing 

the onset of peri-implant mucositis and its progression to peri-implantitis. [49] 

 

The realization of biomimetic dental implant coatings hinges on a meticulous 

orchestration of the Tissue Engineering Triad. [50] This triumvirate, encompassing 

cellular constituents, ingenious engineering methodologies, and the strategic 

integration of biochemical and physicochemical cues, paves the way for the 

development of intricate surface architectures, known as scaffolds that emulate 

the native extracellular matrix. This synergistic interplay fosters a 

microenvironment conducive to cellular adhesion, proliferation, and 

differentiation, ultimately leading to functional and durable tissue integration.[50,51] 
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In tissue engineering, scaffolds serve as crucial temporary matrices, fostering 

cellular proliferation until achieving functional autonomy. [52] These scaffolds 

require meticulously designed interconnected pore networks with optimal 

dimensions to facilitate efficient diffusion of essential growth factors. [53] 

Additionally, ideal scaffolds possess commendable attributes like mechanical 

strength,[54] biodegradability, bioactivity,[55,56] hydrophilicity, [57] and 

biocompatibility, while promoting tissue-inductive properties. [57,58,59,60] 

 

A versatile array of techniques is presently employed for scaffold fabrication. 

[58,61,62] These include electrospinning for generating highly porous nanofibrous 

scaffolds[63]; phase separation offering precise control over pore size and 

distribution[64]; solvent casting commonly used for drug delivery and cell culture 

applications; particulate leaching that allows tailoring porosity and pore 

interconnectivity by incorporating and subsequently removing sacrificial particles., 

gas foaming which introduces bubbles into the material to create lightweight 

scaffolds with interconnected pores;[65,66] rapid prototyping that utilizes computer-

aided design and additive manufacturing for intricate geometries and 

functionalities, bioprinting, decellularization, melt electro-writing (MEW) and 

others.[67,68,69] 

 

Electrospinning employs an electrohydrodynamic process where an electric field 

induces the formation of a charged polymer jet. This jet undergoes stretching and 

solvent evaporation, resulting in the production of nanofibrous scaffolds with a 

high surface area-to-volume ratio.[70,71] 

These electrospun fibrous scaffolds characterized by nanoscale/microscale 
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structures and interconnected pores mirroring the natural extracellular matrix in 

tissues, exhibit considerable promise in fostering the development of functional 

tissues. This potential is attributed to their notable features, including high 

porosity, specific surface area, favorable cell adhesion, and controlled drug 

release. [70, 71, 72] 

Therefore, this study aims to fabricate a novel tissue-engineered scaffold that 

may be seamless replicability over three-dimensional surfaces, such as dental 

implant necks and abutments, to create a microenvironment conducive to optimal 

tissue healing at the implant-soft tissue with enhanced cell proliferation, and anti-

bacterial colonization to provide biologically stable implants. 

 

RESEARCH GAPS:  

The integral aspect of dental implant integration, the 'biological seal' encircling a 

dental implant, serving as a crucial physiological and biological barrier against the 

external environment, is frequently disregarded. The existing approach to healing 

lacks comprehensiveness, omitting critical phases such as coagulation, 

inflammation reduction, cell proliferation, heightened soft tissue attachment, and 

biofilm formation prevention, all of which play pivotal roles in implant integration. 

Notably, there is a current absence of micro or macrostructural surface 

modifications capable of facilitating perpendicularly directed collagen attachment 

of gingival fibers onto the implant surface. This underscores the need for a more 

holistic and tailored approach to enhance the efficacy of dental implant 

integration. 



AIMS AND OBJECTIVES  

9 
 

 

AIM 

Fabrication and characterization of a bilayer tissue-engineered scaffold 

incorporating Polydopamine and Gelatin-hyaluronic acid-copper nanofibers, for 

enhanced bio seal and antimicrobial properties of dental implants 

 
OBJECTIVES 

1. To synthesize and characterize a tissue-engineered bi-layer scaffold 

containing polydopamine and Copper nanoparticle embedded Gelatin-

Hyaluronic acid electrospun mat. 

2. To evaluate the cell proliferation, attachment, and cytotoxicity of this tissue-

engineered bilayer scaffold against gingival fibroblasts  

3. To investigate the antimicrobial efficacy of the tissue-engineered bilayer 

scaffold-coated titanium Dental implant surface 

 
NULL HYPOTHESIS (H0): 

The biomodification of the surface of Grade V titanium alloy with tissue-

engineered bi-layer scaffold does not improve cell proliferation and attachment at 

the implant site and promotes microbial activity, resulting in an incomplete 

implant bio-seal. 

 

ALTERNATE HYPOTHESIS (H1): 

The biomodification of Grade V titanium alloy surface with bilayer tissue-

engineered scaffold enhances cell proliferation and attachment at the implant site 

while providing anti-microbial action, thereby improving the peri-implant mucosal 

seal. 

 



LITERATURE SURVEY 
 

10 
 

1.3.1 PERI-IMPLANT MUCOSA IN PERI-IMPLANT DISEASE PATHOGENESIS: 

 
1. Ikeda et al. (2000) employed a rat maxilla implantation model to investigate 

the ultrastructural features of the peri-implant epithelium (PIE) interface. The 

authors advocated the application of horseradish peroxidase (HRP) as a 

tracing agent in the mucosal region surrounding dental implants or teeth,  as 

a means to visually demonstrate the distribution patterns observed at each 

transmucosal interface. In the natural interface, it was discerned that 

copious amounts of HRP were retained at the coronal region of the 

Junctional Epithelium (JE) and Internal Basal Lamina (IBL). In contrast, 

elevated concentrations of HRP were evident from the upper to middle 

regions of the PIE encircling dental implants. Thus, it was discerned that 

only the lower region exhibited a resilient epithelial attachment structure, 

while such structural integrity was notably absent in the middle and upper 

portions.[73] 

 
2. Atieh et al. (2013) conducted a systematic review and meta-analysis to 

assess the prevalence of peri-implant diseases in both general and high-risk 

populations. Their analysis of nine studies, encompassing 1,497 participants 

and 6,283 implants, revealed that peri-implant mucositis affected 63.4% of 

participants (30.7% of implants) and peri-implantitis affected 18.8% of 

participants (9.6% of implants). The authors concluded that peri-implant 

diseases are a common complication following implant therapy. [74] 

 
3. Matteo Albertini et al. (2014) conducted an assessment of periodontal and 

opportunistic flora in individuals diagnosed with peri-implantitis, identifying 

specific microorganisms such as Candida albicans, Pseudomonas 
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aeruginosa, Staphylococcus aureus, and Staphylococcus warneri in the 

context of peri-implantitis. The study's findings led to the noteworthy 

conclusion that the implant surface may be colonized by pathogens distinct 

from those commonly associated with periodontal bacteria. The presence of 

opportunistic pathogens, notably P. aeruginosa, S. aureus, and C. albicans, 

was observed, prompting the authors to suggest a potential association 

between these opportunistic pathogens and the occurrence of implant 

failure[75] 

 
4. Wang et al. (2015) reviewed soft tissue healing around dental implants, 

highlighting potential shortcomings in peri-implant soft tissue integration 

compared to natural teeth. Their analysis revealed a less favorable 

alignment of gingival fibers and diminished vascular supply at the implant 

interface, leading to reduced resistance against bacterial invasion. This 

vulnerability predisposes the peri-implant region to complications like peri-

implant disease and bone loss. Notably, the authors observed significant 

differences in fibroblast and collagen fiber alignment compared to natural 

teeth. In natural dentition, collagen fibers exhibit a perpendicular orientation 

providing strength, while around implants, they align parallel to the surface, 

making them weaker and more susceptible to breakdown and bacterial 

invasion.[76] 

 
5. Shibli et al. (2015) identified key factors influencing osseointegration, peri-

implant disease, and treatment. Their consensus report highlighted the 

critical role of the soft tissue seal, encompassing the junctional epithelium 

and connective tissue adaptation, for implant success. They emphasized the 
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importance of preserving the peri-implant biologic width and avoiding its 

disruption. Additionally, the report stressed the significance of the abutment-

implant seal in minimizing mechanical and biological complications, 

maintaining marginal bone levels, and ultimately contributing to long-term 

implant success. [77] 

 
6. Ivanovski et al. (2017) compared healthy and diseased peri-implant and 

periodontal marginal soft tissues, concluding that maintaining the integrity of 

the peri-implant soft-tissue seal is crucial for peri-implant health. Their study 

revealed that specific implant design features, such as the connection 

between the implant and abutment and the surface characteristics of both 

elements, may influence the long-term health of the surrounding soft 

tissues.[78] 

 
7. Lafaurie et al. (2017) undertook a comprehensive systematic review to 

evaluate the microbial diversity in peri-implantitis, periodontitis, and healthy 

implant sites. The review encompassed investigations of microbial biofilms 

and whole microbiomes to elucidate similarities and discrepancies in 

microbial community. The review identified peri-implantitis as a diverse and 

mixed infection, incorporating periodontopathic microorganisms, non-

cultivable anaerobic Gram-positive rods, as well as other non-cultivable 

Gram-negative rods. Additionally, opportunistic microorganisms, including 

enteric rods and Staphylococcus aureus, were identified, albeit 

infrequently.[79] 
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1.3.2 TISSUE-ENGINEERED SCAFFOLDS FOR DENTAL APPLICATIONS 

 
8. Hatayama et al. (2017) investigated the use of collagen scaffolds for in-situ 

tissue engineering for gingival tissue regeneration. They compared two 

scaffolds, CS-pH7.4 and CS-pH3.0, derived from atelocollagen treated at 

different pH levels. The study assessed epithelial and submucosal tissue 

lengths at the wound site compared to the control. They found that CS-

pH7.4 significantly increased epithelial and submucosal tissue regeneration, 

leading to restored gum thickness. This led the authors to conclude that CS-

pH7.4 holds promise as a scaffold for gingival tissue regeneration.[80] 

 
9. In 2018, Makita et al. conducted an investigation exploring the impact of 

micro/nanopatterned gelatins crosslinked with genipin on the 

biocompatibility of dental implants. The study elucidated that the intricate 

design of the gelatin surface pattern can effectively modulate both the 

attachment and proliferation of Saos-2 cells. Consequently, gelatin surfaces 

patterned through genipin crosslinking emerge as a viable option for the 

deliberate patterning of biocompatible materials, demonstrating their 

potential as a valuable choice in this regard.[81] 

 
10. Jitendra Sharan et al. (2018)  investigated the impact of bio-functionalization 

on grade V titanium alloy by incorporating type I human collagen for 

enhancing and promoting human periodontal fibroblast cell adhesion. The 

study's findings led to the conclusion that bio-functionalization significantly 

contributes to the improvement of cell growth, consequently fostering the 

formation of a gingival seal-like structure in soft tissues. This enhancement 

is anticipated to positively influence the dynamic interaction between soft 
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tissues and the customized surface of titanium grade V alloy, ultimately 

augmenting its survivability within the biological system. [82] 

 
11. Hameed et al., (2018) studied antibacterial properties of copper 

nanoparticles surface coating on titanium dental implant. The results 

revealed that Cu2+ released from Ti Cu and Ti Cu/HA exerted a strong 

antibacterial effect against P. gingivalis suggesting that Cu2+ showed good 

antibacterial activity against the microorganism. The antibacterial efficiency 

of Cu nanoparticles was dependent on the quantities of Cu2+. According to 

this study, copper ion doped hydroxyapatite (Cu/HA) in nanoparticles is 

considered highly effective as an antibacterial agent and Titanium surface 

modification with this material can be recommended as an attractive coating 

for local control of infection around dental implant. [83] 

 
12. Thanh Dinh et al. (2018) conducted a study on the enhancement of tissue 

integration for medical implants using a novel approach. The authors 

proposed a method involving the combination of an enzyme-crosslinked 

gelatin hydrogel with polydopamine (PDA) coating to improve integration 

between any implant material and various tissues. The enzyme-crosslinked 

gelatin hydrogel demonstrated non-cytotoxicity to human dermal fibroblasts, 

facilitating cell adhesion and proliferation. The collective findings suggest 

that the synergistic application of PDA coating with a gelatin hydrogel holds 

promise for augmenting the integration of diverse medical implants. [84] 

 
13. Jayanti Mendhi et al., (2021) studied Endogenous nitric oxide-generating 

surfaces via polydopamine-copper coatings for preventing biofilm dispersal 

and promoting microbial killing. NO generated from the PDAM@Cu coatings 
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effectively induced the dispersal of biofilms shown by the reduction in biofilm 

biomass as well as reduced biofilm attachment in samples prepared with 

blood and NO donors. Cu ions released from the PDAM@Cu coatings 

resulted in the killing of the dispersed bacteria, which was evidenced by the 

live/dead cell staining and reduced metabolic activity noted from the XTT 

assay. The authors concluded that PDAM@Cu coatings with NO-generating 

surfaces have a dual anti-biofilm function, with a synergistic effect on biofilm 

dispersal from regulated NO generation and bactericidal effects from Cu 

ions from the coatings. [85] 

 
14. Fernández et.al, (2021) investigated the effects of hyaluronic acid (HA) on 

peri-implant clinical variables and crevicular concentrations of the 

proinflammatory biomarkers interleukin (IL)-1β and tumor necrosis factor 

(TNF)-α in patients with peri-implantitis. The HA treated group showed lower 

Probing pocket depth (PPD) and less bleeding on probing compared to the 

control group. This study demonstrates for the first time that the topical 

application of a HA gel in the peri-implant pocket and around implants with 

peri-implantitis may reduce inflammation and crevicular fluid IL-1β levels. [86] 

 
15.  In the year 2023, Lin et al. conducted an in vivo investigation focusing on a 

biodegradable bilayer polyurethane fibrous membrane manufactured 

through uniaxial electrostatic spinning. This innovative approach aimed to 

establish dual-sided Janus properties by incorporating the bioactive 

compound dopamine (DA) and the antimicrobial Gemini Quaternary 

Ammonium Salt (QAS). The findings of the study revealed that the Janus 

polyurethane fibrous membrane exhibited a remarkable capacity to 
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significantly enhance the regeneration of periodontal defects in rat subjects. 

This outcome, attributed to the membrane's superior mechanical properties 

and biocompatibility, underscores its potential applications in the domain of 

periodontal regeneration.[87] 

 
16.  Webb et al. (2024) developed composite scaffolds for gingival tissue 

regeneration using light-cured, electrospun materials with tunable 

hydrophilicity and biodegradation. They employed methacrylated Gelatin 

(GelMa) crosslinked with synthetic methacrylates’ and defined monomers, 

incorporating degradable polyurethane (D-PHI) and polycarbonate urethane 

(PCNU) in a factorial design. The resulting materials exhibited rapid initial 

degradation followed by a gradual process, enabling early infiltration of 

human adipose-derived stromal/stem cells while maintaining graft integrity. 

These findings suggest the potential of these scaffolds for oral soft tissue 

regeneration due to their ability to balance cell infiltration with structural 

stability.[88] 
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2.1 SAMPLE COLLECTION 

Gingival tissue samples (n = 3) were collected from periodontally and 

systemically healthy subjects reporting to the Department of Periodontology, A.B. 

Shetty  Memorial Institute of Dental Sciences, undergoing Premolar extraction as 

a part of orthodontic treatment or crown lengthening procedure after obtaining 

their consent. 

Institutional ethical clearance was obtained before the start of the study. (Ref.No. 

ETHICS/ABSMIDS/250/2022) 

2.1.1 CRITERIA FOR INCLUSION 

 Periodontally healthy patients with probing depth ≤ 3mm, with no clinical

attachment loss and <10% bleeding on probing.* 

 Systemically healthy individuals

 18-30 years

*According to the 2017 Classification of Periodontal and Peri-implant Diseases

and Conditions (89)

2.1.2 CRITERIA FOR EXCLUSION 

 Gingivitis/periodontitis patients with probing depth >3 mm

 Systemically compromised patients

 Pregnant and lactating women

 Patients under antibiotic drug therapy
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2.2 FABRICATION OF GE/HA/PDA/CuNPs BILAYER SCAFFOLD 

FOR SOFT TISSUE ENGINEERING 

2.2.1 MATERIALS: 

Commercially available, 10 mm diameter x 2 mm thickness Grade V titanium 

alloy (Ti-6Al-4V) discs meeting ASTM standards served as dental implant 

prototypes in this study. The discs with 99.9 % purity (Young’s Modulus of 

104GPa, Density 4.429g/cm3) were purchased from Parshwamani Metals, 

Mumbai, India 

Type A pure Gelatin (Bloom 280, Isoelectric point 7-8) for tissue engineering 

applications was graciously supplied by the Tessenderlo Innovation Centre, 

Belgium (PB Leiner) from their CLAROTM tissue-engineering products range. 

Dopamine HCl (Extra pure >98%, CAS No.: 62-31-7), N, N-Dimethylformamide 

(DMF, Extra pure AR >99.5%, CAS No.: 68-12-2), and 1M 

Tris(hydroxymethyl)amino methane, Hydrochloric Acid buffer (Tris-HCl buffer, pH 

8) were procured from Sisco Research Laboratories, India.

Hyaluronic acid, Na salt (Mr = 1.0-1.5x106), was obtained from Research Lab

Fine Chem. Industries, Mumbai. Copper nanoparticles with a size range of 5-

10nm and a purity of 99.5% were sourced from Nano Research Lab, 

Jamshedpur. 
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2.2.2 PREPARATION OF TITANIUM DISCS FOR SCAFFOLD APPLICATIONS: 

Grade 5 titanium alloy (Ti-6Al-4V) discs, with a diameter of 10mm and thickness 

of 2 mm, were subjected to a meticulously controlled polishing process to achieve 

a surface finish comparable to the smooth surfaces observed on the 

necks/collars of dental implants. Silicon Carbide (SiC) abrasive sheets of 

increasing grit size 200, 320, 400, and 600 were progressively employed, 

followed by a final polishing step using 1-micron oil-based diamond paste. 

After the polishing process, the Ti-alloy discs were subjected to an ultrasonic 

cleaning procedure utilizing acetone, ethanol, and deionized water sequentially to 

eliminate any residual polishing compounds or contaminants. The discs were air-

dried and stored in a hot air oven, to ensure a sterile dry surface for subsequent 

utilization. 

2.2.3 POLYDOPAMINE COATING TREATMENT: 

2.0 grams of Dopamine HCl was dissolved in 600 ml (0.1mol/L) of Tris- HCl 

buffer in an open Pyrex beaker and subjected to ultrasonic agitation for 30 

minutes at room temperature. The cleaned Ti discs were then immersed in the 

prepared dopamine/Tris-HCl buffer solution for duration of 24 hours and the self-

polymerization of dopamine was verified by the discernible color change of the 

solution to dark gray. The PDA coated Ti discs were then removed and cleansed 

with deionized water, and subjected to overnight drying in a vacuum oven at 

room temperature. 
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2.2.4 FABRICATION OF NANOFIBROUS GE/HA/CUNP ELECTROSPUN MAT: 

A nanofibrous scaffold composed of gelatin (GE), hyaluronic acid (HA), and 

copper nanoparticles (CuNPs) was fabricated via electrospinning. To determine 

the optimal composition for subsequent experiments, the gelation and spinnability 

of various combinations were assessed.  

Pure gelatin at various weight percentages (8%, 9%, 10%, 15%, and 20%) and 

HA (sodium salt) at different weight percentages (0.01%, 1%, 2%, 3 % and 4%) 

were combined with various weight ratios (GE/HA = 1:1, 9:1, 8:2, 7:3, 6:4, and 

5:5) and subjected to electrospinning under different controlled conditions till an 

optimum composition and ratio was achieved. 

Following the assessment of gelation and spinnability, a 20wt. % of Gelatin and 

3wt. % of hyaluronic acid in the GE/HA weight ratio of 6:4 was deemed optimal 

and chosen as the concentration for further investigations. 

 

Preparation of 3wt. % HA Solution: 

To prepare the solution for electrospinning, 3 wt. % of HA was combined with 

DMF, and double distilled water (DI) in a 1:1 ratio, resulting in a 4ml solution. This 

mixture was subjected to constant stirring using a magnetic stirrer for 8 hours 

until the solution became transparent.  

 

Preparation of 20wt. % GE-CuNPs Solution: 

Varying weight percentages of copper nanoparticles (1%, 5%, 10%, 15%, and 

20%) based on the weight of Gelatin were added to a 1:1 solution of DMF and DI 

to obtain a 6ml solution. This mixture was then subjected to ultrasonication for 24  

 

hours to ensure a homogeneous distribution of the Cu nanoparticles.  
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Following this, a 20% w/v gelatin was dissolved in the 1:1 solution of DMF and DI 

containing homogenously distributed CuNPs at 40°C for 20 minutes. The 

dissolution process was expedited through constant stirring to achieve a 

homogeneous solution. 

 

Preparation of GE /HA/ CuNPs polymer solution for electrospinning: 

To promote optimal interaction and minimize air bubble formation, the prepared 

CuNPs dissolved Gelatin (GE/CuNPs) solution was gradually introduced drop 

wise at a controlled rate into the HA solution under continuous stirring at 40°C. 

This process was continued for approximately 30 minutes, until the solution 

achieved a uniform dark grey color, confirming the successful amalgamation of 

the components and the formation of a homogeneous and well-integrated 

biopolymer solution ideally suited for subsequent electrospinning. 

 

Electrospinning of GE/HA/CuNPs nanofibrous mat scaffold: 

The GE/HA/CuNPs nanofibers were fabricated using a commercially available 

electrospinning system (E-spin-Nano V1-VHC, Physics Equipment Co., India) 

under precisely controlled environmental conditions.  

 

Precise thermostatic control of the electrospinning chamber environment, 

maintained at approximately 40°C with humidity <50%, ensuring both the 

retention of targeted solution viscosity and the promotion of consistent fiber 

morphology. This optimal temperature facilitated the efficient evaporation of the 

DMF solvent, further ensuring the successful formation of nanofibers with the  

desired characteristics. A dedicated heating lamp positioned within the chamber 

facilitated precise temperature control. 
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A 10-mL syringe, equipped with a 0.8 mm inner diameter capillary tip possessing 

a 6% luer taper, served as the polymer solution reservoir. A dedicated syringe 

pump facilitated the precise delivery of the polymer solution through the needle 

tip at a controlled flow rate of 0.5 ml/hour. For optimal fiber morphology and 

uniformity, a constant voltage of 22 kV was applied, and the needle-to-collector 

distance was maintained at 12 cm throughout the electrospinning process. 

 

The electrospun nanofibers were collected onto the PDA-coated Ti-alloy discs 

strategically arranged on a 200x200mm plate collector.  Subsequently, the 

GE/HA/CuNPs/PDA-coated Ti-discs underwent crosslinking via exposure to 1% 

glutaraldehyde vapors for 30 minutes within a sealed chamber.  

 

To ensure the complete elimination of any residual solvents and glutaraldehyde 

vapors, the discs were subjected to a vacuum oven treatment at ambient 

temperature overnight. Finally, the discs were transferred to a dedicated UV 

chamber (254nm/8W) for targeted cross-linking of the gelatin component and 

concurrent sterilization. 
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Figure 1: Image showing the electrospinning apparatus setup used in the study 
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Figure 2: This digital image depicts a GE/HA /CuNPs electrospun scaffold 

formed over PDA coated Ti alloy disc placed on a collector plate. 
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2.3 CHARACTERIZATION OF THE BILAYER SCAFFOLD 

 

2.3.1 Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray 

Spectroscopy (EDS)  

A high-resolution Field Emission Scanning Electron Microscope (FESEM) was 

employed to analyze the morphological characteristics of the electrospun 

nanofibers. 

  

The instrument used was a JEOL JSM-7610FPLUS (Japan), equipped with an 

Energy Dispersive X-ray Spectroscopy (EDS) system. The accelerating voltage 

during analysis was set at 10 kV. A thin layer of gold was coated to the samples 

using the JFC 1600 auto fine coater from JEOL Ltd., Japan, before conducting 

SEM imaging.  

 

To ensure comprehensive and statistically relevant data, various parameters like 

fiber diameter, particle distribution, and uniformity were quantitatively assessed 

using the dedicated image analysis software.  Subsequently, fiber diameter 

measurements were performed on 50 randomly selected fibers, with each fiber 

analyzed at three distinct locations using ImageJ 1.5 software (National Institutes 

of Health, USA). 
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Figure 3: Representative image of the front-view image of a JEOL JSM-

7610FPLUS scanning electron microscope (SEM) equipped with an Energy 

Dispersive Spectroscopy (EDS) detector. The cylindrical EDS detector, 

positioned above the specimen chamber, facilitates elemental analysis of 

microscopic samples 
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2.3.2 Fourier-transform infrared spectroscopy 

Fourier Transform Infrared (FTIR) spectroscopy was employed for the recording 

of spectra, utilizing a Jasco FTIR 4200 spectrometer. The objective of this 

analysis was to discern the surface composition of the mats. By utilizing FTIR, 

information about the functional groups formed and the nature of bonding on 

Titanium (Ti) alloy discs, both before and after surface modifications, was 

elucidated. The analysis was done in attenuated mode for the GE/HA 

/PDA/CuNPs coated Ti-disc, PDA-coated Ti-disc, and in transmission mode for 

the other samples. 

This spectroscopic technique enabled a detailed examination of the molecular 

composition and bonding characteristics, shedding light on the chemical changes 

brought about by the surface modifications on the Ti alloy discs. 
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Figure 4: The representative figure depicts a Jasco FTIR 4200 spectrometer 

employed in this study for the identification of functional groups in biological 

samples. The spectrometer operates by directing infrared radiation through the 

sample, causing specific absorption based on its molecular composition. The 

resulting spectrum, generated by interferometer modulation and detected by a 

sensitive detector, provides a unique fingerprint for the identification and 

quantification of targeted functional groups. 
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2.3.3 Contact angle analysis: 

To assess the hydrophilicity of the modified titanium surface for improved cell 

adhesion, the contact angle was measured using a Krüss Advance instrument 

(Krüss, Germany). After cleaning the surface to remove contaminants, a 50μL 

droplet of distilled water was deposited. Images were captured at 5-second 

intervals for 2 minutes, and the contact angle between the surface and the 

droplet edge was automatically determined using Drop Shape Analysis software. 
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2.4 ANTIMICROBIAL STUDIES: 

 

2.4.1 DISC DIFFUSION METHOD: 

The procedural approach undertaken in this investigation adheres to the 

guidelines set forth by the Clinical Laboratory Standard Institute (CLSI) for the 

disc diffusion method employed in antimicrobial susceptibility testing. [90] The 

experiment was conducted in triplicates, with meticulous measurement of each 

inhibition zone to the nearest millimeter using a calibrated caliper.  

 

Inoculum preparation: 

Freeze-dried pellets of Staphylococcus aureus (ATCC-29213) and Pseudomonas 

aeruginosa (ATCC 27853) were obtained from the American Type Culture 

Collection (ATCC). The pellets were inoculated into Brain-Heart Infusion (BHI) 

broth and incubated at 37oC for 4 hours for each bacterial species. A comparison 

with a 0.5 McFarland standard solution was conducted to confirm the density of 

the suspension. 

 

Plate Inoculation and Disc Application  

Following McFarland standard 0.5 turbidity adjustments, of the inoculum 

suspension a sterile cotton swab was employed to inoculate Mueller-Hinton agar 

plates. Each plate was then systematically swabbed with the inoculum solution 

within 15 minutes of preparation, to obtain a uniform lawn of microorganisms. 

After the inoculation process, UV-sterilized GE/HA/PDA/CuNPs scaffold coated 

Ti alloy discs were positioned onto the surface of the growth plates. 
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As a reference, Ciprofloxacin (CIP, 5mcg) HiMedia discs were chosen as a 

control agent for S. aureus, while Amikacin (AK, 30mcg) HiMedia disc served as 

the control for P. aeruginosa. The inclusion of these control agents facilitated a 

comparative assessment of the antimicrobial activity of the scaffold against 

standard antibiotics. 

Incubation and Plate Reading 

The Muller-Hinton agar plates were incubated at 37°C, for 16-24 hours. Following 

this incubation period, the agar plates were positioned with the lids removed on a 

dark background illuminated by reflected light and the diameters of the zones of 

inhibition were measured. A pair of calipers was employed for precision in 

measurement, with the plates held at an approximate distance of 30 cm from the 

observer's eye during the measurement process 
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 2.4.2 BROTH MICRODILUTION METHOD: 

The antibacterial efficacy of polymer solutions formulated with 20 wt.% gelatin, 3 

wt.% hyaluronic acid (6:4 ratio), and varying copper nanoparticle (CuNPs) 

concentrations (15 wt.% and 20 wt.% relative to weight of gelatin) were 

investigated against Pseudomonas aeruginosa and Staphylococcus aureus using 

the broth microdilution method to determine their minimum inhibitory 

concentration (MIC). 

An inoculum suspension of P.aeruginosa and S.aureus (prepared in 0.85% NaCl) 

was standardized to 0.5 McFarland standards, further diluted 1:100 in broth, and 

added to each well, yielding a final inoculum of 1.5 x 106 CFU/mL. 

In a sterile 96-well microplate, column 1 received 200μL of broth medium, 

followed by the addition of 100μL of the polymer solution (20 wt.% gelatin, 3 wt.% 

HA, 6:4 ratio) containing either 15% or 20% CuNPs. Subsequent columns (2-11) 

received 200μL of broth initially. Serial two-fold dilutions were performed from 

columns 1 to 11, resulting in a gradient of polymer concentrations. Following 

incubation at 37°C for 24 hours, the MIC was defined as the lowest concentration 

exhibiting no visible microbial growth, confirmed by the absence of both turbidity 

and precipitation. 
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2.5 CYTOTOXICITY AND CELL PROLIFERATION 

2.5.1 ISOLATION AND CULTURE OF HUMAN GINGIVAL FIBROBLASTS 

Human gingival fibroblasts were procured with approval from the institutional 

ethical committee, and sourced from healthy subjects undergoing orthodontic 

tooth extraction or crown lengthening procedures. The gingival tissues acquired 

were promptly and meticulously preserved in a sterile saline solution, ensuring 

the maintenance of their physiological integrity and viability for subsequent 

investigative procedures. 

The gingival samples collected underwent thorough rinsing with phosphate-

buffered saline (PBS) for 3 to 4 cycles. Subsequently, the gingival samples were 

sectioned into 1×1 mm dimensions and placed onto a 4 mm diameter petri dish. 

After allowing the tissues to settle in the Petri dish for 5-10 minutes, they were 

supplied with Dulbecco’s modified eagle’s medium (DMEM) culture media, 

maintained at a pH of 7.2, and enriched with 10% fetal bovine serum (FBS), 

100µg/ml penicillin, and 100mg/ml streptomycin to prevent microbial growth. 

The culture plates were incubated in a humidified environment at 37°C with 5% 

CO2 and 95% air to mimic physiological conditions and promote optimal cell 

growth. 

Cultured cells were subsequently harvested through treatment with 0.25% 

trypsin-0.025% EDTA in PBS. Subculturing of gingival fibroblasts was performed 

weekly at a 1:4 ratio, with a change in the culture medium between subcultures. 
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2.5.2 CELL VIABILITY DETERMINATION BY MTT ASSAY 

To evaluate the cytotoxicity of the materials, triplicate samples (n = 3) were 

prepared for each experimental group: 

Control (C): Cultured gingival fibroblasts were maintained in their standard 

culture medium without any additional treatment. This group served as the 

baseline for cell viability. 

Test group 1 (Ti-coated): Titanium alloy discs coated with polydopamine and 

embedded with a gelatin-hyaluronic acid electrospun scaffold containing CuNPs 

at the previously determined highest antimicrobial activity (20wt. %)

Test group 2 (Ti-Coated): Unmodified titanium alloy discs 

The samples underwent toxicity assessment using the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In a 96-well plate, gingival 

fibroblasts at a frequency of 5×104 were evenly seeded. UV-sterilized Ti-coated 

and Ti- uncoated discs were introduced into the medium. The assay was 

performed at four time points: 0, 24, 48, and 72 hours. 

At each time point, cells were rinsed with PBS, followed by incubation with 

5mg/ml MTT solution for 4 hours at 37°C. Subsequently, dimethyl sulfoxide was 

introduced to each well to dissolve the chromogenic products formed through the 

reduction of tetrazolium salts by dehydrogenases and reductases. The 

absorbance was measured using a microplate reader (Thermo Fisher Scientific, 

USA) at a wavelength of 570nm. Control cells, left untreated, served as a 

baseline with their viability set at 100%. 
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2.5.3 CELL PROLIFERATION: 

A 24-well tissue culture plate (Thermo Scientific, USA) was used for cell 

proliferation assay. Cell-substrate interactions were evaluated using three distinct 

substrates, each tested in triplicate (n=3). 

Control Group: HGFs directly seeded onto the culture plate surface 

Study Group 1 (Ti-coated): HGFs seeded onto tissue-engineered titanium alloy 

discs coated with polydopamine and embedded with a gelatin-hyaluronic acid 

electrospun scaffold containing CuNPs at the previously determined highest 

antimicrobial activity (20wt. %) 

Study group 2 (Ti-uncoated): Unmodified titanium alloy disc 

Cells were seeded at a density of 1 x 104 cells per well and cultured in triplicate 

for each time point (0, 24 hours, 48 hours, and 72 hours). At each designated 

time point, cells from individual wells were harvested, counted using a 

hemacytometer under a phase-contrast microscope (Olympus, Japan), and the 

mean count for triplicate wells was calculated. 



METHODOLOGY 

 

36 
 

 

2.6 STATISTICAL ANALYSIS: 

 

The data were entered in MS Excel and then exported to SPSS version 22 for 

statistical analysis. All experiments were performed in triplicates. For the data on 

antibacterial activity, reduction in the CFUs and zone of inhibition for S.aureus 

and P.aeruginosa was summarised using mean and standard deviation. Inter-

group comparisons were performed using ANOVA, and Tukey’s post-hoc test. 

The confidence interval was considered at 95% and p ≤ 0.05 was considered 

statistically significant. 

For the cell proliferation and cytotoxicity analysis, the assay was performed in 

triplicates for each group. Statistical analyses were performed using two-way 

analysis of variance (ANOVA) (GraphPad Prism, USA). Any p-value below 0.05 

was considered statistically significant. Tukey’s test was used as the follow-up 

post hoc comparison method. The results were presented as mean ± standard 

deviation. 
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3.1 CHARACTERIZATION OF GE/HA/PDA/CuNPs SCAFFOLD: 

 

 

 

 

 

 

 

 

 

 

Figure 5: Optical image showing titanium discs before and after coating with 

GE/HA/PDA/CuNPs electrospun scaffold. 

A. Unmodified titanium disc displaying a smooth, textured surface. 

B. Titanium disc coated with GE/HA/PDA/CuNPs electrospun mat scaffold. 
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3.1.1 SCANNING ELECTRON MICROSCOPY (SEM) CHARACTERIZATION 

OF GE/HA/CuNPs ELECTROSPUN MAT 

 

Scanning Electron Microscopy (SEM) analysis of the GE/HA/CuNPs electrospun 

mats revealed a uniform and interconnected network of nanofibers with smooth, 

bead-free morphology. The average fiber diameter, measured from high-

resolution SEM images using ImageJ software, was 284 ± 60 nm, indicating a 

narrow and consistent size distribution across the mat. 
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Figure 6: SEM images of the GE/HA/CuNPs electrospun scaffold at 1000 x 

magnification showing an interconnected network of fibers and porous 

morphology. 
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Figure 7: SEM images of the GE/HA/CuNPs electrospun scaffold  

A: At 2,500x magnification 

B: At 2,700x magnification. 

 

 

 

 

 

 

 

 

Figure 8: Figure showing Scanning electron microscopy (SEM) images of the 

electrospun GE/HA/CuNPs scaffold at: 

A. Magnification of 5000x reveals regions of copper nanoparticle (CuNPs) 

aggregation, highlighted by yellow arrows. 

B. Magnification of 10,000x 

 

A B 

A B 
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Figure 9: Scanning electron microscopy (SEM) image of the electrospun 

GE/HA/PDA/CuNPs composite scaffold with the corresponding histogram 

illustrating the diameter distribution of the fibers. The mean fiber distribution is 

284nm with standard deviation of 60nm. 

Regions of copper nanoparticle (CuNPs) aggregation are highlighted by yellow 

arrows. 
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3.1.2 EDS ANALYSIS 

Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the successful 

integration of copper nanoparticles (CuNPs) within the GE/HA/PDA coating on 

the titanium substrate. The EDS spectra revealed characteristic copper peaks, 

solidifying the presence and distribution of CuNPs throughout the scaffold 

structure. Distinct spectral signatures corresponding to Carbon (C), Nitrogen (N), 

Oxygen (O), and Copper (Cu) demonstrated the presence and close association 

of Gelatin, Hyaluronic acid, and Copper with the electrospun scaffold matrix. 
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Figure 10:  An integrated figure presents a Scanning electron microscopy (SEM) 

image (1000x magnification) of the electrospun nanofiber scaffold alongside its 

corresponding energy-dispersive X-ray spectroscopy (EDS) analysis. Yellow dots 

on the SEM image highlight the distribution of copper nanoparticles (CuNPs) 

within the scaffold, as confirmed by the EDS data. 
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Figure 11: EDS live map demonstrating the presence and distribution of copper 

nanoparticles (CuNPs), indicated by yellow dots. 
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Figure 12: EDS spectrum of the electrospun scaffold, indicating the presence of 

CuNPs (CuLα) through the characteristic peak at X-ray energy (kV). 

 

 

 

 

Table 1: The table presented shows the quantitative analysis results for copper 

(Cu) using the eZAF correction method 

 

 

 

eZAF Quant Result - Analysis Uncertainty: 99.00 % 

Element Weight % Atomic % 

Cu L 100.0 100.0 



RESULTS 

 

46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: EDS overlay map of the electrospun GE/HA/PDA/CuNPs scaffold, 

displaying the elemental distributions of carbon (C - blue), nitrogen (N - green), 

oxygen (O - red), and copper (Cu - yellow). 
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Figure 14: Live EDS elemental map of the electrospun GE/HA/PDA/CuNPs 

scaffold, depicting the spatial distribution of carbon (C - blue), nitrogen (N - 

green), oxygen (O - red), and copper (Cu - yellow). 
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Figure 15: This figure presents an energy-dispersive X-ray spectroscopy (EDS) 

spectrum of the GE/HA/PDA/CuNPs mat scaffold. The graph displays 

characteristic peaks corresponding to the presence of carbon (C), nitrogen (N), 

oxygen (O), and copper (Cu) in the sample. 

 

 

Table 2: eZAF Quantitative Analysis of Elements in the GE/HA/PDA/CuNPs mat 

scaffold 

eZAF Quant Result - Analysis Uncertainty: 99.00 % 

Element Weight % Atomic % 

C K 61.9 67.3 

N K 22.0 20.5 

O K 14.5 11.9 

Cu L 1.6 0.3 
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3.1.3 FOURIER TRANSFORM INFRARED SPECTROSCOPY ANALYSIS 

 

FTIR analysis was conducted on various samples, including hyaluronic acid, 

gelatin, copper nanoparticles, GE/HA/PDA/CuNPs bilayer scaffold fabricated on 

Ti alloy disc, and polydopamine coated Ti alloy disc to study their chemical 

compositions and bonding interactions.  A plot of % transmittance was generated 

by correlating it with the wavenumber to visualize the characteristic functional 

groups and interactions of covalent bonds present within each sample. 

 

FTIR Spectra of hyaluronic acid: 

 A broadband of around 3258 cm-1 was assigned to the O–H groups in HA. Two 

bands at 1604, 1688, and 1540 cm-1 corresponded to carbonyl stretching bands 

of carboxylic acid and amide I and amide II, respectively. Ether bands were 

assigned at 1151 and 1032 cm-1. Bands at 1517 and 1320 cm-1 are indicative of 

the amide groups in N-acetyl-β-d-glucosamine units, and the bands at 1260 and 

1032 cm-1 are assigned to the vibrations of the carboxylic groups in β-d-

glucuronic acid units. A small peak around 1150 shows C-O-C bonds of the 

polysaccharides. Two bands around 1604 and 1415 cm-1 corresponding to the 

antisymmetric and symmetric valence vibration COO– are present. A peak at 673 

conforms to the out-of-plane aromatic band as well as -CO bands. 

 

FTIR spectra of Gelatin: 

The bands of gelatin in the IR spectra are situated in the amide band region; 

amide-I represents C=O stretching/hydrogen bonding couple with COO, amide-II 
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represents bending vibration of N-H groups and stretching vibrations of C-N 

groups, Amide-III is related to the vibrations in plane of C-N and N-H groups of 

bound amide. Gelatin peaks at 3466 cm-1 attributed to the presence of hydrogen 

bond water and amide A, 1658 cm-1 peaks correspond to the occurrence of 

amide I, at 1565 cm-1 indicates amide-II, band at 1240 cm-1 indicates the amide-

III, peaks range from 1460 V to 1380 cm-1 were attributed to the symmetric and 

asymmetric bending vibrations of the methyl group. A small peak at 1445 

represents -C=O stretching of the carbonate group. A peak at 673 cm-1 conforms 

to the out-of-plane aromatic band and the peak at 1032 cm-1 indicates C-N 

stretching of the pyrrolidine. 

 

FTIR spectrum of copper nanoparticles: 

This analysis was used to determine the functional organic groups on the surface 

of the nanoparticles generated by oleic acid. A broad peak at 3457 cm-1 conforms 

to OH stretching. The peaks at 1614 and 1399 cm-1 correspond to C=C bonds of 

unsaturated compounds and bending of aliphatic C-H respectively. A peak at 673 

conforms to the out-of-plane aromatic band as well as -CO bands. 

 

FTIR spectrum of Ge-HA-Cu nanofibers: 

Observation of the FTIR spectrum shows various peaks confirming the presence 

of the constituent materials. The broad peaks at 3280 and 2930 conform to the 

OH stretching and -CH stretching of aliphatic groups respectively. Bands at 1632, 

1525, and 1239 cm-1 correspond to stretching bands amide I, amide II, and amide 

III, respectively. A peak at 1442 represents -C=O stretching of the carbonate 

group. The bands at 1239 and 1078 cm−1 conform to the vibrations of the 
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carboxylic groups in β-d-glucuronic acid units. 

 

FTIR spectra of GE/HA/PDA/CuNPs mat scaffold coated on the Ti-alloy 

discs:  

Observation of the FTIR spectrum represented shows various peaks confirming 

the presence of the constituent materials. The broad peaks at 3341 conform to 

the OH stretching. Bands at 1632, 1528, and 1260 cm-1 correspond to stretching 

bands amide I, amide II, and amide III, respectively. A peak at 1462 represents -

C=O stretching of the carbonate group. The bands at 1239 and 1078 cm−1 

conform to the vibrations of the carboxylic groups in β-d-glucuronic acid units. 

 

FTIR spectra of polydopamine-coated Ti-alloy disc 

Vibrations associated with C=C functional groups were attributed to peaks at 

1632 cm-1.  PDA exhibited peaks at 2941 cm-1 and 3347 cm-1 corresponding to C-

H and O-H vibrations respectively. Bands at 1519 and 1260 cm-1 correspond to 

stretching bands of amide II and amide III, respectively. A peak at 1467 

represents -C=O stretching of the carbonate group. A band at 1078 cm−1 

conforms to the vibrations of the carboxylic (-C=O) groups. 
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Figure 16: FTIR Spectra of various scaffold components 

A: FTIR spectrum of Hyaluronic acid 

B: FTIR spectrum of Gelatin  

C; FTIR spectrum of Cu Nanoparticles 

D: FTIR spectrum of GE/HA/CuNPs electrospun mat scaffold  

E:  FTIR spectrum of GE/HA/PDA/CuNPs COATED Ti alloy disc  

F: FTIR spectrum of Polydopamine coated Ti-alloy disc.  

The x-axis represents wavenumber (cm⁻¹), and the y-axis represents % 

transmittance. 
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3.1.4 CONTACT ANGLE ANALYSIS: 

The influence of surface chemistry on water interaction was investigated by 

evaluating the wettability of the unmodified Ti-alloy disc, polydopamine (PDA)-

coated Ti- alloy disc, and GE/HA/PDA/CuNPs-coated Ti-alloy disc using a Krüss 

Advance contact angle goniometer (Krüss GmbH, Germany.) 

 

The initial water contact angle of unmodified titanium implants was measured to 

be 77°. This angle gradually decreased over time, reaching 52° within the first 80 

seconds. This initial, relatively high contact angle indicates that water droplets 

initially bead up on the unmodified titanium surface, signifying poor wettability. 

However, the observed decrease in contact angle suggests a gradual 

improvement in wettability over time. 

 

The micro contact angle (MCA) on titanium surfaces coated with polydopamine 

(PDA) exhibited a significant reduction from 17° to 12° within the initial 4 seconds 

of contact. This rapid decrease indicates a marked improvement in surface 

wettability compared to the unmodified titanium implants. The observed 

enhancement can be attributed to the presence of hydroxyl (–OH) and amino (–

NH₂) groups within the PDA structure. These functional groups readily participate 

in hydrogen bonding with water molecules, leading to a stronger interaction and 

lower contact angle. Furthermore, the presence of aromatic rings in the PDA 

structure facilitates π-π stacking interactions with nonpolar molecules, further 

contributing to the overall enhanced wettability of the coated surface. 
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The MCA of the GE/HA/PDA/CuNPs scaffold exhibited an intermediate behavior 

between the unmodified titanium and polydopamine-coated surfaces, initially 

measuring 67° and gradually decreasing to 42°  within 80 seconds. This suggests 

the scaffold possesses an intermediate level of wettability, likely influenced by the 

combined effects of the scaffold's material composition, containing both 

hydrophilic and hydrophobic components, and its surface topography with 

inherent porosity. 
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Figure 17: Water contact angles of  

A. Unmodified Ti-alloy disc (A1 to A3 showing a reduction in MCA from 77o to 52o 

over 80 seconds) 

B. Polydopamine-coated Ti-alloy disc (B1 to B3 showing a reduction in MCA from 

17o to 12o over 4 seconds) 

C. GE/HA/PDA/CuNPs scaffold coated Ti-alloy disc (C1 to C3 showing a  

reduction in MCA from 67o to 42o over 80 seconds) 
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3.2 ANTIMICROBIAL ACTIVITY: 

3.2.1 DISK DIFFUSION: 

The antibacterial activity of GE/HA/PDA/CuNPs scaffolds against Pseudomonas 

aeruginosa (gram-negative) and Staphylococcus aureus (gram-positive) was 

evaluated using the Kirby-Bauer disc diffusion method. Scaffolds loaded with 

varying copper nanoparticle (CuNPs) concentrations (1 wt.%, 5 wt.%, 10 wt.%, 

15 wt.%, and 20 wt.%) were prepared and placed on standardized agar plates 

inoculated with the respective bacterial strains. The diameter of clear inhibition 

zones formed around the scaffolds after incubation was measured and 

interpreted according to established standards. 

 

Incorporating copper nanoparticles (CuNPs) into GE-CuNp/HA/PDA scaffolds 

demonstrated varying degrees of antibacterial efficacy against Pseudomonas 

aeruginosa (gram-negative) and Staphylococcus aureus (gram-positive), as 

evaluated by the Kirby-Bauer disc diffusion method. Samples loaded with 1, 5, 

and 10 wt. % of CuNPs (Ti-coated 1, 2 and 3 respectively) displayed minimal to 

no inhibition against both bacterial strains. This was evidenced by the absence or 

presence of only small inhibition zones around these samples, suggesting limited 

antibacterial activity at these CuNPs concentrations. 

Sample 4 (Ti-coated 4), containing 15 wt. % of CuNPs, exhibited a demonstrably 

stronger antibacterial effect against P. aeruginosa compared to lower CuNPs 

concentrations. This was evident by the presence of a measurable inhibition 

zone, indicating the suppression of bacterial growth. However, its efficacy against  

S. aureus remained limited, as evidenced by the minimal inhibition zone. 



RESULTS 

 

57 
 

 

In stark contrast to the minimal to no activity observed at lower CuNPs 

concentrations, sample 5 (Ti-coated 5, 20 wt.% of CuNPs) demonstrated a 

broad-spectrum and potent antibacterial effect. This was evident by the presence 

of clear inhibition zones against both P. aeruginosa and S. aureus, suggesting 

significant growth inhibition for both bacterial strains. 

 

The disc diffusion assay demonstrated significantly larger zones of inhibition 

surrounding the GE/HA/PDA/CuNPs scaffolds against P. aeruginosa (gram-

negative) compared to S. aureus (gram-positive). This observation signifies a 

greater susceptibility of P. aeruginosa to the antibacterial effects of the scaffolds. 
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Susceptibility against Pseudomonas aeruginosa: 

 

A clear concentration-dependent trend emerged for the antibacterial activity 

against Pseudomonas aeruginosa across all CuNPs-loaded scaffolds. Notably, 

all except one (1 wt. % of CuNPs) tested CuNPs concentrations (5, 10, 15, and 

20 wt. %) showed growth inhibition, as evidenced by measurable inhibition 

zones. Among these, Ti-coated discs incorporated with 20 wt. % CuNPs (Ti-

coated 5) displayed the largest inhibition zone, followed by the 15 wt. % CuNPs 

(Ti-coated 4) group. This unequivocal observation underscores a direct 

correlation between increasing CuNPs concentration and enhanced antibacterial 

efficacy against P. aeruginosa. 

Post hoc analysis using Tukey's honest significant difference (HSD) test revealed 

no statistically significant difference (p= > 0.05) in the antimicrobial efficacy of the 

20 wt. % CuNPs-loaded scaffolds (Ti-coated 5) compared to the Amikacin control 

group. This finding suggests that the 20 wt. % CuNPs-loaded scaffold exhibits an 

equivalent level of antimicrobial activity against the tested Pseudomonas 

aeruginosa as the clinically established antibiotic Amikacin. 
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 SAMPLE ID 
CuNPs concentration 

(wt.%) 

Zone of inhibition (in 

mm) 

Ti coated 1 1% 0 

Ti coated 2 5% 10±0.30 

Ti coated 3 10% 11±0.59 

Ti coated 4 15% 17±1.03 

Ti coated 5 20% 27±1.98 

CONTROL-Amikacin  30±1.05 

 

 

Table 3: This table summarizes the antimicrobial activity of titanium (Ti) discs 

coated with varying CuNPs percentages against Pseudomonas aeruginosa, 

compared to a control group treated with the antibiotic Amikacin. 
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ANOVA 

P aeruginosa 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
2237.111 5 447.422 96.885 .000 

Within 

Groups 
55.417 12 4.618   

Total 2292.528 17    

 

Table 4: One-Way ANOVA results for the effect of CuNPs concentration on P. 

aeruginosa 
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Multiple Comparisons 

(I) Cu 

Concentration 

wt.% 

(J) Cu 

Concentration 

wt.% 

Mean 

Difference (I-

J) 

Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Amikacin 1% 33.33333
*
 .000 27.4397 39.2270 

5% 23.33333
*
 .000 17.4397 29.2270 

10% 22.33333
*
 .000 16.4397 28.2270 

15% 16.33333
*
 .000 10.4397 22.2270 

20% 6.00000
*
 .045 .1063 11.8937 

1% Amikacin -33.33333
*
 .000 -39.2270 -27.4397 

5% -10.00000
*
 .001 -15.8937 -4.1063 

10% -11.00000
*
 .000 -16.8937 -5.1063 

15% -17.00000
*
 .000 -22.8937 -11.1063 

20% -27.33333
*
 .000 -33.2270 -21.4397 

5% Amikacin -23.33333
*
 .000 -29.2270 -17.4397 

1% 10.00000
*
 .001 4.1063 15.8937 

10% -1.00000 .991 -6.8937 4.8937 

15% -7.00000
*
 .017 -12.8937 -1.1063 

20% -17.33333
*
 .000 -23.2270 -11.4397 

10% Amikacin -22.33333
*
 .000 -28.2270 -16.4397 

1% 11.00000
*
 .000 5.1063 16.8937 

5% 1.00000 .991 -4.8937 6.8937 

15% -6.00000
*
 .045 -11.8937 -.1063 

20% -16.33333
*
 .000 -22.2270 -10.4397 

15% Amikacin -16.33333
*
 .000 -22.2270 -10.4397 

1% 17.00000
*
 .000 11.1063 22.8937 

5% 7.00000
*
 .017 1.1063 12.8937 

10% 6.00000
*
 .045 .1063 11.8937 

20% -10.33333
*
 .001 -16.2270 -4.4397 

20% Amikacin -6.00000
*
 .045 -11.8937 -.1063 

1% 27.33333
*
 .000 21.4397 33.2270 

5% 17.33333
*
 .000 11.4397 23.2270 

10% 16.33333
*
 .000 10.4397 22.2270 

15% 10.33333
*
 .001 4.4397 16.2270 

 

Table 5: This table summarizes the results of post-hoc comparisons conducted using 

Tukey's HSD test following a one-way ANOVA to assess the antimicrobial efficacy of 

different concentrations of CuNPs against the dependent variable i.e., 

 P. aeruginosa.  
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Figure 18: This figure presents the antimicrobial activity of GE/HA/PDA/CuNPs 

coated discs with varying copper nanoparticle (CuNPs) concentrations against 

Pseudomonas aeruginosa. Each disc is depicted within its respective zone of 

inhibition, representing the clear area surrounding the disc where bacterial growth is 

inhibited due to the antimicrobial effect of the scaffold coated discs. 

A. Zone of inhibition around Ti-coated disc 2 (5 wt.% CuNPs) 

B. Zone of inhibition around Ti-coated disc 3 (10 wt.% CuNPs) 

C. Zone of inhibition around Ti-coated disc 4 (15 wt.% CuNPs) 

D. Zone of inhibition around Ti-coated disc 5 (20 wt.% CuNPs) 

A B 

C D 



RESULTS 

 

63 
 

 

Susceptibility against Staphylococcus aureus:  

The study revealed a limited concentration-dependent effect of CuNPs on the 

antibacterial activity against Staphylococcus aureus. Only scaffolds loaded with 

15% and 20 wt. % CuNPs exhibited measurable inhibition zones (average 

diameters of 10±0.15 and 12±0.64, respectively), indicating an absence of activity 

at lower concentrations (1, 5 and 10 wt.%). Notably, the 20% CuNPs group 

displayed the largest inhibition zone, suggesting a threshold effect at this 

concentration.  

 

SAMPLE ID 

CuNPs Concentration 

(wt. %) 

Zone of inhibition (in 

mm) 

Ti coated 1 1% 0 

Ti coated 2 5% 0 

Ti coated 3 10% 0 

Ti coated 4 15% 10±0.15 

Ti coated 5 20% 12±0.64 

CONTROL- Ciprofloxacin  20±0.50 

 

Table 6: This table summarizes the antimicrobial activity of titanium (Ti) discs 

coated with varying CuNPs percentages against Staphylococcus aureus, 

compared to a control group treated with the antibiotic Ciprofloxacin. 
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ANOVA 

S aureus   

 Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 

1050.000 5 210.000 1847.236 .000 

Within 

Groups 

1.364 12 .114   

Total 1051.364 17    

 
Table 7: One-Way ANOVA Results for the Effect of CuNPs Concentration on 

S.aureus 
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Multiple Comparisons 

(I) Cu 

Concentration 

wt.%) 

(J) Cu 

Concentration 

(wt.%) 

Mean 

Difference (I-J) 
Sig. 

95% Confidence Interval 

Lower 

Bound 
Upper Bound 

Amikacin 

1% 33.33333
*
 .000 27.4397 39.2270 

5% 23.33333
*
 .000 17.4397 29.2270 

10% 22.33333
*
 .000 16.4397 28.2270 

15% 16.33333
*
 .000 10.4397 22.2270 

20% 6.00000
*
 .045 .1063 11.8937 

1% 

Amikacin -33.33333
*
 .000 -39.2270 -27.4397 

5% -10.00000
*
 .001 -15.8937 -4.1063 

10% -11.00000
*
 .000 -16.8937 -5.1063 

15% -17.00000
*
 .000 -22.8937 -11.1063 

20% -27.33333
*
 .000 -33.2270 -21.4397 

5% 

Amikacin -23.33333
*
 .000 -29.2270 -17.4397 

1% 10.00000
*
 .001 4.1063 15.8937 

10% -1.00000 .991 -6.8937 4.8937 

15% -7.00000
*
 .017 -12.8937 -1.1063 

20% -17.33333
*
 .000 -23.2270 -11.4397 

10% 

Amikacin -22.33333
*
 .000 -28.2270 -16.4397 

1% 11.00000
*
 .000 5.1063 16.8937 

5% 1.00000 .991 -4.8937 6.8937 

15% -6.00000
*
 .045 -11.8937 -.1063 

20% -16.33333
*
 .000 -22.2270 -10.4397 

15% 

Amikacin -16.33333
*
 .000 -22.2270 -10.4397 

1% 17.00000
*
 .000 11.1063 22.8937 

5% 7.00000
*
 .017 1.1063 12.8937 

10% 6.00000
*
 .045 .1063 11.8937 

20% -10.33333
*
 .001 -16.2270 -4.4397 

20% 

Amikacin -6.00000
*
 .045 -11.8937 -.1063 

1% 27.33333
*
 .000 21.4397 33.2270 

5% 17.33333
*
 .000 11.4397 23.2270 

10% 16.33333
*
 .000 10.4397 22.2270 

15% 10.33333
*
 .001 4.4397 16.2270 

 

Table 8: This table summarizes the results of pairwise comparisons using 

Tukey's HSD test following a one-way ANOVA to assess the antimicrobial 

efficacy of different concentrations of copper nanoparticles (CuNPs) against 

Staphylococcus aureus. 
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Figure 19: This figure illustrates the antimicrobial activity of GE/HA/PDA/CuNPs 

coated discs with varying copper nanoparticle (CuNPs) concentrations (15% and 

20%) against Staphylococcus aureus. 

A. Zone of inhibition around Ti-coated disc 4 (15 wt.% CuNPs) 

B. Zone of inhibition around Ti-coated disc 5 (20 wt.% CuNPs) 
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3.2.2 BROTH MICRODILUTION 

 

The broth microdilution method revealed the minimum inhibitory concentration 

(MIC) of the CuNPs-impregnated GE/HA polymer solution against 

Staphylococcus aureus to be 1200μg/ml for 15 wt. % and 600µg/ml for 20 wt. % 

of CuNPs. Conversely, against Pseudomonas aeruginosa, the MIC values were 

300μg/ml and 115μg/ml for 15 wt.% and 20 wt.% of CuNPs, respectively 

These results indicated a higher sensitivity of the CuNPs against P. aeruginosa 

than compared to S. aureus. 

Data obtained from serial broth microdilution assay also showed a direct 

correlation between the antimicrobial effects on microbial colonies with time. 
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Figure 20: Broth Microdilution Assay for Antibacterial Susceptibility Testing of 

CuNPs-Incorporated GE/HA Polymer Solution against two bacterial strains: P. 

aeruginosa and S. aureus. The wells are arranged in rows, with each row containing 

different concentrations of the polymer solution. The 11th well serves as the positive 

control, and the 12th well acts as the negative control. 

A. Antibacterial susceptibility of 20wt.% CuNPs-incorporated GE/HA polymer 

solution against P. aeruginosa. Turbidity is observed starting from the 5
th
 well, 

indicating bacterial growth at and below this concentration. 

B. Antibacterial susceptibility of 15wt.% CuNPs-incorporated GE/HA polymer 

solution against P. aeruginosa. Turbidity is observed starting from the 3
rd

 well. 

C. Antibacterial susceptibility of 15wt.% CuNPs-incorporated GE/HA polymer 

solution against S. aureus. Turbidity is observed starting from the 2
nd

 well. 

D. Antibacterial susceptibility of 15wt.% CuNPs-incorporated GE/HA polymer 

solution against S aureus. Turbidity is observed starting from the 3
rd

 well. 
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CuNPs 

concentration 

Contact 

time 

Colony-forming units 

(CFU) per milliliter (mL) 

of surviving microbial 

population following 

interaction with 

GE/HA/CuNPs 

Antibacterial activity 

 (% reduction in 

CFU) 

S.aureus P.aeruginosa S.aureus P.aeruginosa 

20% 

0 hours 1.5 x 108 1.5 x 108 - - 

4 hours 0.5 x 107 1.5 x 106 96.6 99 

24 hours 1.0x105 2 99.93 99.99 

15% 

0 hours 1.5 x 108 1.5 x 108 - - 

4 hours 1.2 x 108 0.2 x 108 20 86.7 

24 hours 1.0x107 0.3x107 93.3 98 

 

Table 9: Bacterial Survival after Exposure to GE/HA/CuNPs Scaffold 
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Figure 21: Line graph depicting the percent reduction in bacterial count over 

varying contact times for two representative bacterial samples (P.aeruginosa and 

S.aureus) 
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3.3 CELL PROLIFERATION AND CYTOTOXICITY 

 

The viability and growth potential of human gingival fibroblasts (HGFs) were 

assessed in vitro to evaluate the biocompatibility of the fabricated Ti-coated (GE-

CuNp/HA/PDA) scaffolds. HGFs were successfully cultured and subsequently 

exposed to the scaffolds for varying durations. To investigate the impact of 

scaffold exposure on cellular health and proliferation, both cytotoxicity and 

proliferation assays were performed. 

All three groups (control, Ti-coated, and Ti-uncoated) show a similar trend of 

increasing cell viability over time (24 hrs., 48 hrs., 72 hrs.). At each time point, the 

Ti-coated group exhibits slightly higher cell viability compared to the Ti-uncoated 

group. Ti-coated group shows similar cell viability to the control group, particularly 

at 48 and 72 hours. This indicates that the Ti coating does not significantly alter 

cell viability compared to the standard culture conditions. 

The cell proliferation analysis revealed no significant difference in cell 

proliferation between the control and Ti-coated alloy disc at the 24-hour time 

point, indicating that both groups supported initial cell attachment and spreading. 

Subsequent evaluation of cell proliferation demonstrated a highly statistically 

significant difference (p < 0.0001) between the GE/HA/PDA/CuNPs-coated Ti 

alloy disc (Ti-coated disc) and the unmodified Ti disc (ti-coated) at all time points 

investigated (24, 48, and 72 hours). These findings suggest that the 

GE/HA/PDA/CuNPs scaffold significantly enhances the attachment, migration, 

and proliferation of Human Gingival Fibroblasts (HGFs). 
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Figure 22: Representative image of HGFs exhibiting their characteristic 

fibroblastic morphology. This image serves as a crucial control, demonstrating 

the healthy and viable state of the cultured cells before interaction with the 

scaffolds. 
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Figure 23: Representative image of cell culture plate used for testing the 

cytotoxicity of selected materials on human gingival fibroblasts (HGFs) by 3-[4,5-

Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and proliferation 

assay.  

For MTT assay, the absorbance was recorded at 570 nm using a multiplate 

reader (Thermo Fisher Scientific, USA). 
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Figure 24: Viability values of human gingival fibroblasts exposed to Ti coated and 

Ti uncoated materials. The human gingival fibroblasts cultured alone served as a 

control. MTT assay was carried out at different time points, (24 hrs. 48 hrs., and 

72 hrs), and the absorbance values measured at 570 nm are plotted.  

Superscripts ‘a, b and c’ indicate statistically significant (P<0.05) differences in 

the viability values between the control and tested materials at each time point of 

assay. 

‘ns’ indicate no statistically significant (P>0.05) differences for control and each 

tested material between the various time points as indicated. 
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Figure 25: Proliferation of human gingival fibroblasts exposed to Ti-coated and 

Ti-uncoated materials. The human gingival fibroblasts cultured alone served as a 

control. Proliferation assay was carried out at different time points, 24 hrs., 48 

hrs., and 72 hrs., and the cell numbers were plotted accordingly.  

Superscripts ‘a, b and c’ indicate statistically significant (P<0.05) differences in 

the number of human gingival fibroblasts between the control and tested 

materials at each time point of assay. 

*, **, and *** indicate statistically significant (P<0.05) differences for control and 

each tested material between the various time points as indicated in the graph. 

The assay was performed in triplicates for each group.  
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The study explored the fabrication of a multifunctional, tissue-engineered 

electrospun scaffold that may be easily replicated over the complex three-

dimensional topography of dental implants, such as the neck and/or abutment, to 

facilitate accelerated and robust soft tissue regeneration at the implant-soft tissue 

interface while concurrently mitigating bacterial colonization to provide 

biologically stable implants.  

 
The success of dental implants hinges on their seamless integration with host 

tissues along with functional anti-microbial activity. While the normal oral flora is 

typically non-threatening, implanted biomaterials present unique challenges that 

can trigger bacterial virulence and biofilm formation. [91] 

 
The current trend in biomaterial design prioritizes either cell integration or 

antimicrobial activity, creating a trade-off that limits the full potential of these 

materials. [91,92] However, recent advances are uncovering methods and 

techniques that synergistically integrate both functionalities. It is crucial to 

acknowledge that certain implant surfaces designed to promote cell attachment 

might paradoxically facilitate biofilm formation. Conversely, surfaces engineered 

for antimicrobial efficacy may exhibit cytotoxicity or fail to stimulate tissue 

attachment. [93] 

 
The omnipresence of peri-implant biofilm formation and microbial colonization 

poses a significant challenge to long-term implant success, irrespective of implant 

design or disease status. [94,95] Mounting evidence unequivocally demonstrates 

the ubiquitous infiltration of microbes into the peri-implant sulcus and the implant-

abutment interface (IAI) as early as five hours after functional loading, mediated 
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by microleakage through micro gaps inherent in various connection designs.  

While Morse taper connections may exhibit marginally lower bacterial burdens, 

they are not invincible to colonization.[96,97] 

 

Current strategies to mitigate this challenge, such as utilizing 0.2% chlorhexidine 

during two-step implant surgeries, primarily target bacterial reduction. However, 

these approaches fail to address the issue of bacterial endotoxin penetration, 

which persists even after initial disinfection.[98]  

 
Thus, the persistent challenge of postoperative complications associated with 

microbial colonization of implant surfaces also necessitates the exploration of 

multifaceted effective and safe antimicrobial strategies for implant surfaces.  A 

plethora of promising approaches have been investigated, encompassing 

Engineered surface modifications, nano topography and antimicrobial peptide 

functionalization, UV-activatable surface, Drug-loaded and metal nanoparticle-

polymer coating primarily silver(AgNPs). [99, 100, 101] 

 

Within the landscape of antimicrobial metal nanoparticle coatings, copper 

nanoparticles (CuNPs) present themselves as a potentially safer alternative due 

to several key advantages such as broad-spectrum activity against various 

bacteria, including multidrug-resistant strains, good biocompatibility and inherent 

body mechanisms to regulate copper homeostasis.[102,103,104]   

The human body possesses dedicated copper-transporting adenosine 

triphosphatases (Cu-ATPases) like ATP7A and ATP7B. These efficiently 

eliminate excess copper through the intestine (ATP7A) and bile/milk 

(ATP7B), mitigating the risk of long-term accumulation and associated 
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cytotoxicity compared to silver or other metal antimicrobial nanoparticles.[104] 

 

This study utilized copper nanoparticles (CuNPs) within the size range of 5-10nm 

embedded within the GE/HA scaffold. Energy-dispersive X-ray spectroscopy 

(EDS) confirmed the presence and uniform distribution of CuNPs throughout the 

scaffold. The selection of 5-10nm CuNPs was strategically guided by the need to 

achieve an optimal balance between three critical parameters: sustained 

antimicrobial activity, minimized cytotoxicity, and long-term scaffold stability. 

Extant literature confirms an inverse relationship between nanoparticle size and 

antimicrobial efficacy. [104,105,106] 

 

The antimicrobial activity of the CuNPs embedded GE/HA/PDA scaffold was 

confirmed by the presence of distinct inhibition zones surrounding Ti-coated discs 

placed on bacteria-inoculated agar plates after 24 hours. Notably, the broad-

spectrum antibacterial activity of the 20 wt. % CuNPs loaded scaffolds matched 

that of the Amikacin control, a clinically established antibiotic effective against 

Pseudomonas aeruginosa. The lower MIC value and larger inhibition zone 

observed for P. aeruginosa relative to S. aureus further support this observation. 

 
These results suggest the potential of the CuNPs embedded scaffolds as an 

effective antimicrobial agent, exhibiting enhanced activity against gram-negative 

P. aeruginosa compared to gram-positive S. aureus. This promising finding 

underscores the need for further investigation to explore the therapeutic potential 

of these scaffolds and optimize their efficacy for specific applications. 

 
The antimicrobial activity can also be attributed to arise from the synergistic 

action of CuNPs with the scaffold components.  The GE/HA/CuNPs electrospun 
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scaffold reinforced by employing Polydopamine as an intermediate bridging layer 

on the Ti alloy disc surface that would have prevented bacterial adhesion whilst 

enhancing the adhesion of CuNPs to the scaffold, potentially improving their 

interaction with bacteria. This would result in dual action of Cu, i.e. NO release 

mediated biofilm dispersion, and bacterial killing. [102, 107]  

 
The hyaluronic acid, can also contribute by disrupting bacterial adhesion 

and preventing biofilm formation, which can enhance the antimicrobial 

effectiveness of CuNPs. [108] The porous nature of the GE/HA/PDA/CuNPs 

scaffold would have also offered a significant advantage by enabling sustained 

release of CuNPs potentially prolonging antimicrobial efficacy without requiring 

high initial doses.[109]  

 
Furthermore, the RGD signaling motif present within gelatin facilitates enhanced 

host cell infiltration into the scaffold. [110] This influx of cells, primarily fibroblasts 

and immune cells, could potentially contribute to the observed antimicrobial effect 

by secretion of antimicrobial factors and enhanced immune response. 

 
However, further investigations are needed to fully elucidate the specific roles 

and relative contributions of these mechanisms in the observed antimicrobial 

effect. Future studies could employ in vitro and in vivo models to quantify host 

cell infiltration, measure the production of specific antimicrobial factors, and 

assess the impact on bacterial burden and immune cell activation. 

 
While the GE/HA/PDA/CuNPs scaffold coating offers promising antimicrobial 

activity, long-term success hinges not only on combating bacterial pathogens at 

the implant site but also on establishing a robust biological seal. This seal, 
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formed by the integration of soft tissue with the implant surface, plays a critical 

role in preventing infections and ensuring implant stability. [16, 111] 

Our investigation established a two-step fabrication process for a bilayer scaffold 

coating on Ti alloy discs. This process involved meticulous cleaning and drying of 

the discs, followed by controlled immersion in a Dopamine-Tris HCl buffer 

solution to facilitate the self-polymerization and formation of a polydopamine 

(PDA) layer. The successful deposition of the PDA layer was then confirmed 

through Fourier-Transform Infrared Spectroscopy (FTIR) analysis, demonstrating 

the presence of characteristic functional group peaks associated with PDA. 

 
The GE/HA/CuNPs scaffold was fabricated using a biomimetic approach, aiming 

to mimic the natural extracellular matrix (ECM) and provide a supportive 

environment for cell growth. Electrospinning a solution of gelatin and hyaluronic 

acid (GE: HA = 6:4) dissolved in a volatile solvent mixture (DMF: DI) yielded a 

porous network of interconnected fibers with an average diameter of 284 nm as 

confirmed by SEM analysis. FTIR analysis further confirmed the presence of the 

desired components (GE, HA, and CuNPs) within the scaffold. 

 
Contact angle measurements revealed significantly lower contact angles on the 

GE/HA/PDA/CuNPs mat scaffold-coated Ti alloy disc compared to the uncoated 

Ti alloy disc, indicating enhanced hydrophilicity. This can be attributed to two key 

factors: The presence of hydrophilic groups and porous structure. The composite 

nanofibers contain functional groups like hydroxyl (-OH) and carboxyl (-COOH) 

present in the gelatin and hyaluronic acid components, which can readily interact 

with water molecules, promoting surface wetting. [112,113]  
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The interconnected pores within the scaffold create a larger surface area and 

provide capillary forces that draw in water droplets, further contributing to the 

observed hydrophilicity. This enhanced hydrophilicity is a key advantage, as it is 

well-documented to promote cell adhesion and proliferation. By providing a more 

favorable environment for cell attachment and spreading, the scaffold can 

potentially support tissue regeneration. [112,114,115] 

 
In vitro cytotoxicity and proliferation analysis yielded promising results, 

demonstrating a statistically significant enhancement in cell growth and 

proliferation on the GE/HA/PDA/CuNPs-coated Ti alloy disc compared to the 

uncoated Ti discs. This observation aligns with the findings of scanning electron 

microscopy (SEM), which revealed extensive fibroblast alignment parallel to the 

substrate surface. 

 
These observations suggest intimate cell spreading and potentially enhanced 

interaction with the modified topography of the scaffold coating. This can be 

attributed, in part, to the inherent properties of the nanofibrous structure. 

Compared to flat surfaces, the nanofibers offer a significantly larger surface area, 

providing more space for cell adhesion and spreading. Additionally, the 

intertwined fibers create microenvironments that mimic the natural extracellular 

matrix (ECM), further promoting cell attachment and growth.[116,117] 

 
Gelatin, a major component of the scaffold, possesses inherent arginine-glycine-

aspartic acid (RGD) sequences. These sequences act as biomimetic ligands, 

readily recognized by integrin receptors on fibroblast cell membranes. This 

interaction triggers important cell signaling pathways essential for attachment, 

migration, and proliferation.[30,118] 
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The synergistic combination of hyaluronic acid (HA) and gelatin within the 

scaffold matrix offers distinct benefits. HA contributes to tissue lubrication and 

hydration, reducing friction and wear while also interacting with specific receptors 

on cells crucial for soft tissue regeneration, such as fibroblasts and endothelial 

cells.[119,120] This interaction promotes cell adhesion, migration, and proliferation, 

ultimately contributing to tissue repair and potentially improving the integrity of the 

seal. 

 
HA plays a role in stimulating the formation of new blood vessels (angiogenesis), 

enhancing vascularization within the soft tissue. This improved blood supply 

ensures adequate delivery of nutrients and oxygen, supporting tissue viability and 

promoting faster healing. HA possesses inherent anti-inflammatory properties, 

mitigating tissue inflammation often associated with implantation.[121] This 

reduced inflammatory response promotes faster healing and creates a more 

conducive environment for long-term implant success. 

 
PDAs can adhere to a wide range of materials, including metals, polymers, and 

even biological tissues. [22,23] This makes it a valuable tool for surface modification 

and enhancing the adhesion of various components within the scaffold. The 

resulting formation of strong covalent and non-covalent interactions with the 

surfaces fosters durable and long-lasting adhesion, crucial for the structural 

integrity and functionality of the scaffold over time. [122]  

 
This approach of enhancing component adhesion through surface modification 

offers specific advantages pertinent to scaffold performance. Firstly, it reinforces 

the scaffold's structural integrity, particularly during the torqueing forces 
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encountered during implant insertion. Secondly, it strengthens the interaction 

between the scaffold and surrounding tissues, potentially promoting improved 

tissue integration and long-term functionality. 

 

In conclusion, this study successfully developed a novel bilayer bio-engineered 

scaffold with promising properties for tissue regeneration. The 

GE/HA/PDA/CuNPs scaffold presents a biocompatible and structurally supportive 

microenvironment, featuring mussel-inspired adhesion. This promotes host cell 

adhesion, growth, and potential differentiation, ultimately contributing to tissue 

regeneration. Mimicking the structure and function of the native extracellular 

matrix (ECM), the scaffold offers increased stability with tailored porosities. These 

features facilitate the self-seeding of native cells and promote the formation of a 

well-integrated implant-abutment interface, resembling the natural tooth. 

Additionally, the scaffold's inherent antimicrobial activity inhibits bacterial 

colonization at the implant-tissue interface within the first 24 hours, a crucial 

period for postoperative healing and successful cell attachment. These combined 

features suggest the potential of this scaffold for advancing translational and 

multidisciplinary implant research and promoting tissue regeneration in dental 

implantology. 

 
While this study showcases promising results for the GE/HA/PDA/CuNPs scaffold 

in dental implant applications, several limitations hinder a definitive assessment 

of its clinical potential. Firstly, the study does not address the scaffold's long-term 

performance, neglecting crucial factors like attachment strength, degradation 

rate, and bio-tribocorrosion. Further exploration is required to evaluate the 

potential for mimicking natural tissue organization by studying perpendicular PDL 
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fiber insertion within the scaffold's porous structure. Thirdly, the impact of the 

scaffold on the immune system, specifically its potential immunomodulatory 

effects, remains unexplored. Investigating its influence on inflammatory 

responses, both anti-inflammatory and pro-inflammatory markers, could be 

beneficial for mitigating peri-implant complications. 

Fourthly, while focusing on fibroblast migration and attachment, the study 

neglects the crucial interaction with epithelial tissue. Finally, the primary reliance 

on in vitro models necessitates further investigation through an optimized in vivo 

study for a definitive evaluation.  

 
Addressing these limitations and pursuing the outlined future research directions 

are crucial for comprehensively understanding the GE/HA/PDA/CuNPs scaffold's 

potential to improve clinical outcomes and patient experience in dental implant 

therapy. 
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5.1 CONCLUSION 

 

This study successfully developed and characterized a novel GE/HA/PDA/CuNPs 

electrospun scaffold, demonstrating its potential as a biocompatible coating for 

dental implants to enhance soft tissue integration. Despite limitations, the results 

indicate this scaffold could contribute to a healthy biological seal by promoting 

fibroblast infiltration, potentially leading to improved tissue growth and integration 

around the implant. This ultimately fosters a stronger and more durable seal while 

effectively eliminating bacteria at the implant site, minimizing infection risk and 

promoting tissue healing. By understanding the synergistic effects of the scaffold 

on both bacterial control and tissue integration, we can optimize its design and 

pave the way for improved clinical outcomes in dental implant therapy. 
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5.2 SUMMARY 

This thesis aimed to develop a novel coating for dental implants that offers dual 

functionality: enhancing tissue integration and mitigating infection risk for long-

term clinical benefit. 

 

5.2.1 Fabrication and characterization of bi-layer GE/HA/PDA/CUNPs 

scaffold: 

Grade 5 titanium discs, measuring 10mm in diameter and 2mm thick, were 

polished and then cleaned ultrasonically. These discs were subsequently coated 

with polydopamine (PDA) through self-polymerization of a dopamine solution. 

Following optimization, a polymer solution containing 6:4 weight ratio of Gelatin 

(280 bloom, Type A) to hyaluronic acid, sodium salt (Mr 1.0-1.5x106) was 

prepared for electrospinning. Copper nanoparticles (5-10nm size) were 

incorporated at varying concentrations according to the weight percentage of 

gelatin. The solutions were then carefully combined under controlled conditions. 

 

Using a controlled electrospinning system, the optimized solution was 

electrospun onto the PDA-coated titanium discs under precisely controlled 

temperature, humidity, voltage, and distance parameters. The scaffolds 

underwent crosslinking with 1% glutaraldehyde vapors, followed by vacuum 

treatment to eliminate residual solvent and glutaraldehyde vapors. The gelatin 

component was further crosslinked and sterilized using UV irradiation. 
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This meticulous fabrication process resulted in a bilayer scaffold with a PDA-

coated titanium base and a nanofibrous GE/HA/CuNPs layer. The scaffold 

exhibited the desired characteristics, including appropriate fiber morphology, 

confirmed composition, and improved hydrophilicity, as confirmed by SEM, EDS, 

FTIR, and Contact Angle analysis, making it suitable for potential cell adhesion 

and further exploration in soft tissue engineering applications. 

 

5.2.2 Exploring the antibacterial potential of GE-CUNP/HA/PDA scaffolds: 

 

This section delves into the antibacterial properties of GE/HA/PDA/CuNPs 

scaffolds against two bacterial strains: Pseudomonas aeruginosa (gram-negative) 

and Staphylococcus aureus (gram-positive). 

The investigation employed the Kirby-Bauer disc diffusion method to evaluate the 

scaffolds' antibacterial effects. Scaffolds loaded with varying CuNPs 

concentrations were tested, starting with the lowest CuNPs concentration (1 

wt.%) and progressively increasing by 5% for each subsequent test (5 wt. %, 10 

wt.%, 15 wt./%, and 20 wt.%). Notably, larger zones of inhibition, indicating 

greater bacterial suppression, were observed against P. aeruginosa compared to 

S. aureus. This suggests a higher susceptibility of P. aeruginosa to the scaffolds' 

antibacterial properties. 

Among the tested CuNPs concentrations, 20 wt. % exhibited the most potent 

activity against P. aeruginosa, comparable to the positive control antibiotic 

(Amikacin). This finding highlights the potential of these scaffolds as broad-

spectrum antibacterial agents against gram-negative bacteria. However, the 
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efficacy against S. aureus remained limited, with only 15 and 20 wt. % CuNPs 

demonstrating measurable inhibition zones, suggesting a less pronounced 

concentration-dependent effect. 

To further explore the selective susceptibility observed the minimum inhibitory 

concentration (MIC) of the CuNPs-impregnated GE/HA polymer solution was 

determined using the broth microdilution method. Broth microdilution testing 

revealed the CuNPs-impregnated GE/HA solution's MIC against S. aureus was 

decreased by increasing the CuNPs concentration (1200μg/ml at 15 wt. % and 

600μg/ml at 20 wt. %).  Similarly, MICs decreased with increasing concentration 

(112 μg/ml at 15 wt.% and 75 μg/ml at 20 wt.%) against P. aeruginosa.   

The comparatively lower MIC of 20wt.% CuNPs reinforced the disc diffusion 

findings, confirming a higher sensitivity of P. aeruginosa to CuNPs compared to 

S. aureus. This selective susceptibility highlights the potential of tailoring CuNPs 

concentration to target specific bacterial strains. 

A direct correlation was observed between the CuNPs concentration and the 

reduction in P. aeruginosa colonies over time, emphasizing the dynamic nature of 

the antibacterial activity. 

 

5.2.3 Cell proliferation and cytotoxicity 

A total of three samples were obtained from periodontally and systemically 

healthy individuals aged 18-30 years undergoing premolar extraction for 

orthodontic treatment or crown lengthening procedures following institutional and 

ethical approval.  

The tissue was meticulously preserved in sterile saline to ensure its viability for 

subsequent experiments. Following thorough rinsing and sectioning, the gingival 
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samples were placed in Petri dishes and nourished with a specially formulated 

culture medium containing essential nutrients and antibiotics. The culture 

environment was carefully controlled with specific humidity, temperature, and 

carbon dioxide levels to optimize cell growth. To maintain a healthy cell 

population, a passaging process was performed weekly, involving the dilution and 

transfer of cells to a fresh medium. 

 

To evaluate the potential cytotoxicity of the coated material, three groups were 

established: a control group with no intervention, a test group 1 exposed to 

titanium discs coated with the material containing copper nanoparticles at the 

highest tested minimum inhibitory concentration (MIC), and a test group 2 

exposed to uncoated titanium discs. Gingival fibroblasts were seeded in a 96-well 

plate and co-incubated with the respective test materials. The MTT assay, a 

reliable indicator of metabolic activity and thus cell viability, was conducted at 

four-time points: 0, 24, 48, and 72 hours. Cell viability was calculated relative to 

the control group, representing 100%. 

 

Encouragingly, all groups displayed an increasing trend in cell viability over time. 

Notably, the group exposed to the coated discs consistently exhibited slightly 

higher cell viability compared to the uncoated discs at each time point. 

Furthermore, the coated discs demonstrated comparable cell viability to the 

control group, particularly at later time points.  

This promising result suggests that, at the tested concentration, the Ti coating 

with copper nanoparticles did not significantly alter the viability of human gingival 

fibroblasts compared to standard culture conditions and bare titanium discs. This 
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finding paves the way for further evaluation of the coated material's 

biocompatibility and potential suitability for various applications. 

 

 A statistically significant difference (p < 0.0001) was demonstrated between the 

GE/HA/PDA/CuNPs-coated Ti alloy disc and the unmodified control at all 

investigated time points (24, 48, and 72 hours). This finding suggests that the 

incorporation of CuNPs within the scaffold significantly enhances the attachment, 

migration, and proliferation of HGFs. 
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5.3 LIMITATIONS AND SCOPE FOR FUTURE WORK: 

While this study offers promising results for the GE/HA/PDA/CuNPs scaffold, 

several key areas require further investigation to fully understand its potential for 

clinical application in dental implants.  

 

Further analysis of the scaffold's integration with surrounding tissues, including 

attachment strength, degradation rate, and bio-tribocorrosion, was not addressed 

in the current work. Additionally, studying perpendicular PDL fiber insertion within 

the scaffold's porous structure, as suggested by its design, would be valuable to 

evaluate its potential for mimicking natural tissue organization. 

 

The potential immunomodulatory effects of the scaffold were not investigated in 

the current study. Further investigation evaluating the Anti-inflammatory and pro-

inflammatory markers could be particularly beneficial for mitigating peri-implant 

complications.  

 

Tissue Regeneration vs. Repair: Peri-implant tissue healing often prioritizes 

repair over regeneration, potentially compromising soft tissue attachment. While 

this study focused on fibroblast migration, and attachment, exploring the 

interaction with epithelial tissue is equally important. Studying a model that 

incorporates both epithelial and connective tissues would provide a more 

comprehensive understanding of the healing process. 
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The current study primarily relied on in vitro models; however, an optimized in 

vivo study is crucial to assess the scaffold's performance in a complex biological 

environment. An in vivo model with single-stage implant placement would allow 

for long-term observation of the biological seal's stability and the impact of 

sustained CuNPs release on surrounding tissues. This would provide crucial 

insights into the scaffold's durability and potential effects over time. 

 

By addressing these limitations and pursuing the outlined future directions, this 

research can pave the way for a more comprehensive understanding of the 

GE/HA/PDA/CuNPs scaffold's potential to improve clinical outcomes and overall 

patient experience in dental implant therapy. 
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STUDY TITLE- FABRICATION AND EVALUATION OF A NOVEL BI-LAYER TISSUE 

ENGINEERED SCAFFOLD FOR IMPROVED BIO SEAL AND ANTIMICROBIAL 

PROPERTIES OF DENTAL IMPLANTS: AN IN VITRO STUDY 

 

 

Name: 

CASE SHEET  

Case no: 

Age:  Date: 

Gender:  

Address: 

Education: 

Marital status: 

Occupation: 

Height: 

Weight: 

Medical history: 

a. Systemic diseases: 

b. Menopause: 

Personal history: 

1. Oral hygiene practices –  

a. Type: 

b. Frequency: 

c. Method: 

2. History of smoking: 

3. Diet: 

 

Intraoral examination: 

1. Tongue: 

2. Palate: 

3. Buccal mucosa: 
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COMPARISONS OF CELL VIABILITY  

Tukey's multiple 
comparisons test 

Mean 
Diff. 

95.00% CI of 
diff. 

Below 
threshold? 

Summ
ary 

Adjusted P 
Value 

24 hrs:Control vs. 24 hrs:Ti 
coated 

12.85 4.011 to 21.69 Yes ** 0.0049 

24 hrs:Control vs. 24 hrs:Ti 
uncoated 

31.76 22.92 to 40.59 Yes **** <0.0001 

24 hrs:Control vs. 48 
hrs:Control 

1.505 
-7.334 to 

10.34 
No ns 0.998 

24 hrs:Control vs. 48 hrs:Ti 
coated 

9.465 
0.6258 to 

18.30 
Yes * 0.0343 

24 hrs:Control vs. 48 hrs:Ti 
uncoated 

32.88 24.04 to 41.72 Yes **** <0.0001 

24 hrs:Control vs. 72 
hrs:Control 

0.9 
-7.939 to 

9.739 
No ns >0.9999 

24 hrs:Control vs. 72 hrs:Ti 
coated 

8.565 
-0.2742 to 

17.40 
No ns 0.0591 

24 hrs:Control vs. 72 hrs:Ti 
uncoated 

23.31 14.47 to 32.15 Yes **** <0.0001 

24 hrs:Ti coated vs. 24 hrs:Ti 
uncoated 

18.91 10.07 to 27.74 Yes *** 0.0003 

24 hrs:Ti coated vs. 48 
hrs:Control 

-11.35 
-20.18 to -

2.506 
Yes * 0.0114 

24 hrs:Ti coated vs. 48 hrs:Ti 
coated 

-3.385 
-12.22 to 

5.454 
No ns 0.825 

24 hrs:Ti coated vs. 48 hrs:Ti 
uncoated 

20.03 11.19 to 28.87 Yes *** 0.0002 

24 hrs:Ti coated vs. 72 
hrs:Control 

-11.95 
-20.79 to -

3.111 
Yes ** 0.0081 

24 hrs:Ti coated vs. 72 hrs:Ti 
coated 

-4.285 
-13.12 to 

4.554 
No ns 0.62 

24 hrs:Ti coated vs. 72 hrs:Ti 
uncoated 

10.46 1.621 to 19.30 Yes * 0.019 

24 hrs:Ti uncoated vs. 48 
hrs:Control 

-30.25 
-39.09 to -

21.41 
Yes **** <0.0001 

24 hrs:Ti uncoated vs. 48 
hrs:Ti coated 

-22.29 
-31.13 to -

13.45 
Yes **** <0.0001 

24 hrs:Ti uncoated vs. 48 
hrs:Ti uncoated 

1.125 
-7.714 to 

9.964 
No ns 0.9997 

24 hrs:Ti uncoated vs. 72 
hrs:Control 

-30.86 
-39.69 to -

22.02 
Yes **** <0.0001 

24 hrs:Ti uncoated vs. 72 
hrs:Ti coated 

-23.19 
-32.03 to -

14.35 
Yes **** <0.0001 

24 hrs:Ti uncoated vs. 72 
hrs:Ti uncoated 

-8.445 
-17.28 to 
0.3942 

No ns 0.0635 
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48 hrs:Control vs. 48 hrs:Ti 
coated 

7.96 
-0.8792 to 

16.80 
No ns 0.0853 

48 hrs:Control vs. 48 hrs:Ti 
uncoated 

31.38 22.54 to 40.21 Yes **** <0.0001 

48 hrs:Control vs. 72 
hrs:Control 

-0.605 
-9.444 to 

8.234 
No ns >0.9999 

48 hrs:Control vs. 72 hrs:Ti 
coated 

7.06 
-1.779 to 

15.90 
No ns 0.1468 

48 hrs:Control vs. 72 hrs:Ti 
uncoated 

21.81 12.97 to 30.64 Yes **** <0.0001 

48 hrs:Ti coated vs. 48 hrs:Ti 
uncoated 

23.42 14.58 to 32.25 Yes **** <0.0001 

48 hrs:Ti coated vs. 72 
hrs:Control 

-8.565 
-17.40 to 
0.2742 

No ns 0.0591 

48 hrs:Ti coated vs. 72 hrs:Ti 
coated 

-0.9 
-9.739 to 

7.939 
No ns >0.9999 

48 hrs:Ti coated vs. 72 hrs:Ti 
uncoated 

13.85 5.006 to 22.68 Yes ** 0.0029 

48 hrs:Ti uncoated vs. 72 
hrs:Control 

-31.98 
-40.82 to -

23.14 
Yes **** <0.0001 

48 hrs:Ti uncoated vs. 72 
hrs:Ti coated 

-24.32 
-33.15 to -

15.48 
Yes **** <0.0001 

48 hrs:Ti uncoated vs. 72 
hrs:Ti uncoated 

-9.57 
-18.41 to -

0.7308 
Yes * 0.0322 

72 hrs:Control vs. 72 hrs:Ti 
coated 

7.665 
-1.174 to 

16.50 
No ns 0.102 

72 hrs:Control vs. 72 hrs:Ti 
uncoated 

22.41 13.57 to 31.25 Yes **** <0.0001 

72 hrs:Ti coated vs. 72 hrs:Ti 
uncoated 

14.75 5.906 to 23.58 Yes ** 0.0019 
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COMPARISONS OF CELL PROLIFERATION 

Tukey's multiple 
comparisons test 

Mean 
Diff. 

95.00% CI of 
diff. 

Below 
threshold? 

Summ
ary 

Adjusted P 
Value 

24hrs:Control vs. 24hrs:Ti 
coated 

3250 -5386 to 11886 No ns 0.8366 

24hrs:Control vs. 24hrs:Ti 
uncoated 

62750 
54114 to 
71386 

Yes **** <0.0001 

24hrs:Control vs. 
48hrs:Control 

-74500 
-83136 to -

65864 
Yes **** <0.0001 

24hrs:Control vs. 48hrs:Ti 
coated 

425 -8211 to 9061 No ns >0.9999 

24hrs:Control vs. 48hrs:Ti 
uncoated 

65250 
56614 to 

73886 
Yes **** <0.0001 

24hrs:Control vs. 
72hrs:Control 

-89500 
-98136 to -

80864 
Yes **** <0.0001 

24hrs:Control vs. 72hrs:Ti 
coated 

-14500 
-23136 to -

5864 
Yes ** 0.0018 

24hrs:Control vs. 72hrs:Ti 
uncoated 

56500 
47864 to 

65136 
Yes **** <0.0001 

24hrs:Ti coated vs. 24hrs:Ti 
uncoated 

59500 
50864 to 

68136 
Yes **** <0.0001 

24hrs:Ti coated vs. 
48hrs:Control 

-77750 
-86386 to -

69114 
Yes **** <0.0001 

24hrs:Ti coated vs. 48hrs:Ti 
coated 

-2825 -11461 to 5811 No ns 0.9103 

24hrs:Ti coated vs. 48hrs:Ti 
uncoated 

62000 
53364 to 

70636 
Yes **** <0.0001 

24hrs:Ti coated vs. 
72hrs:Control 

-92750 
-101386 to -

84114 
Yes **** <0.0001 

24hrs:Ti coated vs. 72hrs:Ti 
coated 

-17750 
-26386 to -

9114 
Yes *** 0.0004 

24hrs:Ti coated vs. 72hrs:Ti 
uncoated 

53250 
44614 to 

61886 
Yes **** <0.0001 

24hrs:Ti uncoated vs. 
48hrs:Control 

-137250 
-145886 to -

128614 
Yes **** <0.0001 

24hrs:Ti uncoated vs. 48hrs:Ti 
coated 

-62325 
-70961 to -

53689 
Yes **** <0.0001 

24hrs:Ti uncoated vs. 48hrs:Ti 
uncoated 

2500 -6136 to 11136 No ns 0.9506 

24hrs:Ti uncoated vs. 
72hrs:Control 

-152250 
-160886 to -

143614 
Yes **** <0.0001 

24hrs:Ti uncoated vs. 72hrs:Ti 
coated 

-77250 
-85886 to -

68614 
Yes **** <0.0001 

24hrs:Ti uncoated vs. 72hrs:Ti 
uncoated 

-6250 -14886 to 2386 No ns 0.2164 
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48hrs:Control vs. 48hrs:Ti 
coated 

74925 
66289 to 

83561 
Yes **** <0.0001 

48hrs:Control vs. 48hrs:Ti 
uncoated 

139750 
131114 to 
148386 

Yes **** <0.0001 

48hrs:Control vs. 
72hrs:Control 

-15000 
-23636 to -

6364 
Yes ** 0.0014 

48hrs:Control vs. 72hrs:Ti 
coated 

60000 
51364 to 

68636 
Yes **** <0.0001 

48hrs:Control vs. 72hrs:Ti 
uncoated 

131000 
122364 to 

139636 
Yes **** <0.0001 

48hrs:Ti coated vs. 48hrs:Ti 
uncoated 

64825 
56189 to 

73461 
Yes **** <0.0001 

48hrs:Ti coated vs. 
72hrs:Control 

-89925 
-98561 to -

81289 
Yes **** <0.0001 

48hrs:Ti coated vs. 72hrs:Ti 
coated 

-14925 
-23561 to -

6289 
Yes ** 0.0014 

48hrs:Ti coated vs. 72hrs:Ti 
uncoated 

56075 
47439 to 

64711 
Yes **** <0.0001 

48hrs:Ti uncoated vs. 
72hrs:Control 

-154750 
-163386 to -

146114 
Yes **** <0.0001 

48hrs:Ti uncoated vs. 72hrs:Ti 
coated 

-79750 
-88386 to -

71114 
Yes **** <0.0001 

48hrs:Ti uncoated vs. 72hrs:Ti 
uncoated 

-8750 
-17386 to -

114.2 
Yes * 0.0466 

72hrs:Control vs. 72hrs:Ti 
coated 

75000 
66364 to 

83636 
Yes **** <0.0001 

72hrs:Control vs. 72hrs:Ti 
uncoated 

146000 
137364 to 

154636 
Yes **** <0.0001 

72hrs:Ti coated vs. 72hrs:Ti 
uncoated 

71000 
62364 to 

79636 
Yes **** <0.0001 
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