

Root analog 3D printed dental implant

The nano level challenges

OVERVIEW

- Tooth fracture
- Dental implants
- Systematic literature review
- 3D Printed Results

Most common causes of teeth loss

The three most common causes of teeth loss:

- Caries
- Periodontal disease
- Vertical root fractures (VRF)
- VRF originate in the root and are generally complete, sometimes they may be incomplete [1]
- VRF occur 94% of the time in endodontically treated teeth [2]
- Teeth that have VRF are hopeless and need to be extracted. [3]

Tooth fracture

Premolar teeth are one of the most commonly fractured. Usually, the fracture is so deep that it goes through the root

Fractured premolar

Maxillary Second premolar

Lingual

Occlusal

Mesial

Distal

Implant systems

There are several ways to replace missing tooth. An alternative to bridges, partials or complete dentures may be dental implants. Implants are used to replace missing roots and support artificial replacement teeth.

More than 200 companies with more than 300 different implant systems ranges of designs exist today

MERICAN ACADEMY OF

Differences between the natural tooth and implant

	Natural tooth	Implant
Connection	Periodontal ligament (PDL)	Osseo integration, functional ankylosis
Proprioception	Periodontal mechanoreceptors	Osseo perseption
Tactile sensitivity	High	Low
Axial mobility	25-100 microns	3-5 microns
Movement phases	Two phases Primary: non-linear and complex Secondary: linear and elastic	One phase Linear and elastic
Movement patterns	Primary: immediate movement Secondary: gradual movement	Gradual movement
Fulcrum to lateral force	Apical third of root	Crestal bone
Load-bearing characteristics	Shock absorbing function Stress distribution	Stress concentration at crestal bone
Signs of overloading	PDL thickening, mobility, wear facets, fremitus, pain	Screw loosening or fracture, abutment or prostnesis fracture, bone loss, implant fracture

[6]

The major difference between a tooth and an implant

Healthy Gums

Healthy Bone Structure

3D Printed Root Analogue

New advances have been made in the fabrication of Root Analogue Implants (RAI), where the nonrestorable root of a tooth is 3D printed prior to extraction by Direct Metal Laser Sintering (DMLS) and placed immediately after extraction [7]

[8] Figliuzzi M. et al. Periodontics and Prosthodontics v.2 (01), 2016

3D Printed dental implant

The data available on such titanium dental implants in the current literature is limited. Even though the concept of AM and DMLS manufactured implants are known

3D Printed dental implant publications 2011-2021

A M E R I C A N A C A D E M Y O F IMPLANT DENTISTRY FOUNDATION

Article main topic distribution

Common design path on fabricating the implant for 3D printing

12

[9]

Deviations between the real root and final STL sizes

The deviation between the CAD model and the fabricated implants is common in this process

Reasons:

- Insufficient resolution of the initial CT-Scan data
- Manufacturing deviations
- Shrinkage of material

Test the dimensional distortion and congruence between the root and the alveolar socket

Parameters to be considered for the internal design

- Pore size
- Cell geometry
- Pore distribution
- Interconnectivity
- Percentage of porosity

Example of a root mesh

Internal pore design

Cellular scaffold design in terms of forms and their deformational behavior

Parameters to be considered

Internal design	Surface	Titanium powder	Post-processing
Pore size	Micro-roughness	Chemical composition	Heating
Cell geometry	Nano-roughness	Particle size distribution	Washing
Pore distribution	Surface chemical composition	Amount of reused material	Additional surface treatment, coating
Interconnectivity		Stress of the particles	
Percentage of porosity		Process parameters: Temperature, pressure, sintering time	

Manufacturing inputs and clinical outcomes

Observed manufacturing inputs and clinical outcomes.

Study	Tunchel, S. et al [20].	Mangano, C. et al [21].	Mangano, F. G. et al [22].	Mangano, F. G. et al [5].	Mangano, F. et al [23].	Mangano, C. et al [24].
Manufacturing	All implants were printed with the same volume up to 250 × 250 × 215 mm using the laser spot was 0.1 mm	parameters in argon atmos a wavelength of 1054 nan	phere using a powerful Yb ometers with a continuous	(ytterbium) fiber las power of 200 W at a	er system with the ca a scanning rate of 7 r	apacity to build a n/s. The size of
Powder,	Ti6Al4 V	Ti6Al4 V				
particle size,	titanium (90.08%), aluminum	25–45 μm				
composition	(5.67%), and vanadium (4.25%)	Composition data is no	ot provided			
Macro and	25–45 μm	Ra 66.8 ± 6.6 µm,	66.8 ± 6.6 μm,	66.8	Ra value of	Ra value of
micro features	$R\alpha$ value of 66.8 µm, Rq value of	Rq	77.6 ± 11.1 μm,	(6.6)µm,	66.8, Rq	66.8, Rq
employed	77.55 µm, and Rz value of 358.3 µm	77.6 ± 11.1 μm,	and 358.3 ± 101.9	77.6	value of	value of
		and Rz	μm	(11.1)μm,	77.55, and	77.55, and
		358.3 ± 101.9 µm		and 358.3	Rz value of	Rz value of
				(101.9)µm	358.3	358.3 µm
Survival rate**	94.5%	98.9%	94.6%	100%	97.4%	99.5%

Methodology

The non-restorable tooth root is scanned pre-extraction using Optical Computed Tomography (OCT). The Digital Imaging and Communication in Medicine (DICOM) files of the OCT is then converted to a 3D imaging file.

Average Measurements

Sample	Tooth D
Tooth length (mm)	18.60
Root length (buccal surface) (mm)	10.14
Mesial-distal width at CEJ (mm)	4.83
Buccal-lingual width at CEJ (mm)	7.17

Mounting for Scanning

Tooth A

Tooth B

Tooth C

3D Printing

		Extracted (in mm)	Printed (in mm)	Difference in mm	Difference in %
8.80		Α			
	Width	8.80	9.50	0.70	7.95%
	Length	21.63	22.23	0.60	2.77%
		В			
	Width	9.54	10.15	0.61	6.39%
21.63	Length	22.83	22.76	-0.07	-0.31%
		С			
	Width	8.19	9.40	1.21	14.77%
	Length	18.45	18.66	0.21	1.14%
		D			
	Width	9.54	9.22	-0.32	-3.35%
	Length	22.83	18.50	-4.33	-18.97%

Clinical outcomes

Study	Tunchel,	Mangano,	Mangano, F.	Mangano,	Mangano, F.	Mangano, C				
	S et al	C et al [21]	G. et al [22]	F. G. et al	et al [23]	et al [24]				
	[20]			[5]						
Powder, particle size,		Ti-6Al-4V								
composition		25–45 μm								
Survival rate*	94.5%	98.9%	94.6%	100%	97.4%	99.5%				

A M E R I C A N A C A D E M Y O F IMPLANT DENTISTRY FOUNDATION

Figliuzzi M. et al. Periodontics and Prosthodontics v.2 (01), 2016

Figliuzzi M. et al. Periodontics and Prosthodontics v.2 (01), 2016

Figliuzzi M. et al. Periodontics and Prosthodontics v.2 (01), 2016

Process of RAI fabrication

Key numbers

95–98% Amount of powder approximated to be reusable from the EBM process 31%

Material feedstock in EBM processes can affect up to 31% of the cost of built parts

> 21 times powder can be reused; the O content is 0.18 wt%

Titanium powder degradation during additive manufacturing is a considerable issue since implant chemical composition may influence osteointegration and, thus, is vital for implant survival. Component percent composition of the implant alloy surface affects the interaction between the implant and the bone at the biological level.

SEM image of the Ti6Al4V alloy powder

SEM images of the surface of the Ti6Al4V implant

SAMPLE'S PREPARATION

- X-ray Photoelectron Spectroscopy is used to determine the chemical surface composition of four different Ti-6Al-4V alloy samples.
- Two titanium alloy powders; one from the manufacturer directly and the other is recycled from a previous DMLS process. The other two samples are two implants; one manufactured from new alloy powder and the other is from recycled alloy powder.

Kratos Axis Ultra X-ray Photoelectron Spectroscopy (Wharfside, Manchester, UK)

NT DENTISTRY FOUNDATION

- X-ray Photoelectron Spectroscopy:
 - X-ray irradiates the sample surface, targeting the core electrons of atoms.
 - Core electrons are close to the atom nucleus and have binding energies characteristic of their element
 - Binding energy is the attraction between the electron and the nucleus
 - Ejected electrons have a kinetic energy
 - XPS instrument measures the kinetic energy of all collected electrons
- Sample preparation
 - Etching with Argon to analyze composition at 10nm and 100nm depth

Samples inside XPS

XPS monitor

	Control Powder		Used Powder		Impla	ant_C	Implant_U		
Elements	%	SD	%	SD	%	SD	%	SD	
0	37.4	1.3	39.4	1.0	21.1	6.4	29.8	6.5	
С	44.1	3.3	39.0	1.8	65.9	15.6	47.8	10.4	
N	0.8	0.3	0.8	0.3	0.3	0.3	0.7	0.6	
Na	0.6	0.4	0.7	0.2	1.1	1.6	0.1	0.1	
Ti	9.7	0.8	11.4	1.0	6.2	6.0	8.4	5.0	
Si	2.7	0.8	2.7	0.7	1.9	0.7	0.3	0.6	
AI	4.6	0.4	5.0	0.3	1.5	1.6	3.8	0.4	
Ru	0.0	0.0	1.0	1.8	0.0	0.0	0.0	0.0	
Zn	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.1	
Са	0.0	0.0	0.0	0.0	1.4	0.2	1.3	0.1	
V	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	
Cu	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	
Mg	0.0	0.0	0.0	0.0	0.0	0.0	6.3	1.4	
Р	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.4	

Atomic percentage and standard deviation of the tested samples at surface (0 nm).

Major elements at different depth

		Powder_C		Powder_U		Implant_C			Implant_U				
Peak position (eV)	Compound	0 nm	10 nm	100 nm	0 nm	10 nm	100 nm	0 nm	10 nm	100 nm	0 nm	10 nm	100 nm
454.0 (±0.4)	Ti (metallic)	-	-	62		8.6	4.5	-	31.2	60.7	5.7	58.9	60.4
455.8 (±0.6)	Ti (II)- TiO	20.9	63.7	25.7		65.6	64.5	-	44.8	27.9	11.9	28.5	26.1
457.4 (±0.5)	Ti (III)- Ti2O3	37.2	25.4	12.3	43.7	25.8	30	5.1	24	11.4	26.8	12.6	13.6
458.8 (±0.4)	Ti (IV)- TiO2	41.9	10.9	-	56.3			94.9	-	-	55.6	-	-

High-Resolution XPS results: Atomic Percentage of the Ti 2p peak contribution (%)

High-Resolution XPS results for Ti 2p peak, according to the probed depth. Ti 2p is composed of two spin-orbit peaks: Ti 2p_{3/2} and Ti 2p_{1/2}. The Ti 2p_{3/2} peak sifting from 0 nm to other experimental conditions is noticeable.

Conclusions

- Knowing the chemical composition of prothesis used in the oral cavity will help ensure the biosafety of the material and the adequate mechanical properties are maintained
- Re-using powder from the DMLS process makes it economically feasible for manufacturers
- Even with the degradation of powder properties through the DMLS process, the surface oxide layer has a sufficient presence of TiO2. The above results show that Ti6Al4V powder could be used in up to 20 cycles for RAI manufacturing

Thank you

- Nader Shaker Department of Restorative Dentistry, College of Dentistry, University of Manitoba
- Ana Carla B.C.J. Fernandes Department of Oral Biology, College of Dentistry, University of Manitoba
- Asmaa Haimer Department of Restorative Dentistry, College of Dentistry, University of Manitoba
- Rodrigo França, DDS, MSc, PhD
- Associate Professor, Head of Dental Materials Division
- Director of Dental Biomaterials Research Laboratory
- Core member of the Biomedical Engineering Graduate Program
- Member of Manitoba Institute for Materials College of Dentistry, Faculty of Health Sciences Department of Restorative Dentistry
- Department of Oral Biology

A M E R I C A N A C A D E M Y O F IMPLANT DENTISTRY FOUNDATION

Thank you

References

- 1. Lubisich EB, Hilton TJ, Ferracane J, Northwest P. Cracked teeth: a review of the literature. J Esthet Restor Dent. 2010;22(3):158-67.
- 2. Garcia-Guerrero C, Parra-Junco C, Quijano-Guauque S, Molano N, Pineda GA, Marin-Zuluaga DJ. Vertical root fractures in endodontically-treated teeth: A retrospective analysis of possible risk factors. J Investig Clin Dent. 2017.
- 3. Lertchirakarn V, Palamara JE, Messer HH. Patterns of vertical root fracture: factors affecting stress distribution in the root canal. Journal of endodontics. 2003;29(8):523-8.
- 4. Root form and canal morphology of maxillary first premolars of a Yemeni population https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-018-0555-x
- 5. R. Franca 3D root analogue presentation 2019
- 6. Dr.John Davies, CARDP Toronto conference 2019
- 7. Traini, T., et al. (2008). "Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants." Dent Mater 24(11): 1525-1533.
- 8. Figliuzzi, M., et al. (2012). "A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology." Int J Oral Maxillofac Surg 41(7): 858-862
- 9. Custom-made, root-analogue direct laser metal forming implant: a case report Francesco Guido Mangano & Bruno Cirotti & Rachel Lilian Sammons & Carlo Mangano
- 10. Patient specific root-analogue dental implants additive manufacturing and finite element analysis Johannes Gattinger, Christian N. Bullemer and Ola L. A. Harrysson
- 11. Custom-made, root-analogue direct laser metal forming implant: a case report Francesco Guido Mangano,
- 12. Tan, X. P., et al. (2017). "Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility." Mater Sci Eng C Mater Biol Appl 76: 1328-1343.
- 13. Starch-Jensen, T., et al., A systematic review and meta-analysis of long-term studies (five or more years) assessing maxillary sinus floor augmentation. Int J Oral Maxillofac Surg, 2018. 47(1): p. 103-116.